Research article Special Issues

New soliton solutions of the conformal time derivative generalized $ q $-deformed sinh-Gordon equation

  • Received: 03 November 2023 Revised: 23 December 2023 Accepted: 02 January 2024 Published: 15 January 2024
  • MSC : 35C05, 35C07, 35R11

  • In this article, our main purpose was to study the soliton solutions of conformal time derivative generalized $ q $-deformed sinh-Gordon equation. New soliton solutions have been obtained by the complete discrimination system for the polynomial method. The solutions we obtained mainly included hyperbolic function solutions, solitary wave solutions, Jacobi elliptic function solutions, trigonometric function solutions and rational function solutions. The results showed abundant traveling wave patterns of conformal time derivative generalized $ q $-deformed sinh-Gordon equation.

    Citation: Chun Huang, Zhao Li. New soliton solutions of the conformal time derivative generalized $ q $-deformed sinh-Gordon equation[J]. AIMS Mathematics, 2024, 9(2): 4194-4204. doi: 10.3934/math.2024206

    Related Papers:

  • In this article, our main purpose was to study the soliton solutions of conformal time derivative generalized $ q $-deformed sinh-Gordon equation. New soliton solutions have been obtained by the complete discrimination system for the polynomial method. The solutions we obtained mainly included hyperbolic function solutions, solitary wave solutions, Jacobi elliptic function solutions, trigonometric function solutions and rational function solutions. The results showed abundant traveling wave patterns of conformal time derivative generalized $ q $-deformed sinh-Gordon equation.



    加载中


    [1] Z. Li, C. Huang, B. J. Wang, Phase portrait, bifurcation, chaotic pattern and optical soliton solutions of the Fokas-Lenells equation with cubic-quartic dispersion in optical fibers, Phys. Lett. A, 465 (2023), 128714. https://doi.org/10.1016/j.physleta.2023.128714 doi: 10.1016/j.physleta.2023.128714
    [2] B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066
    [3] O. Guner, Exp-function method and fractional complex transform for space-time fractional KP-BBM equation, Commun. Theor. Phys., 68 (2017), 149. https://doi.org/10.1088/0253-6102/68/2/149 doi: 10.1088/0253-6102/68/2/149
    [4] Z. Li, C. Peng, Bifurcation, phase portrait and traveling wave solution of time-fractional thin-film ferroelectric material equation with beta fractional derivative, Phys. Lett. A, 484 (2023), 129080. https://doi.org/10.1016/j.physleta.2023.129080 doi: 10.1016/j.physleta.2023.129080
    [5] J. Wu, Z. Yang, Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model, AIMS Math., 8 (2023), 17914–17942. https://doi.org/10.3934/math.2023912 doi: 10.3934/math.2023912
    [6] Z. Li, J. Liu, X. Y. Xie, New single traveling wave solution in birefringent fibers or crossing sea waves on the high seas for the coupled Fokas-Lenells system, J. Ocean Eng. Sci., 8 (2023), 590–594. https://doi.org/10.1016/j.joes.2022.05.017 doi: 10.1016/j.joes.2022.05.017
    [7] A. Korkmaz, Exact solutions to (3+1) conformable time fractional Jimbo-Miwa, Zakharov-Kuznetsov and modified Zakharov-Kuznetsov equations, Commun. Theor. Phys., 67 (2017), 479. https://doi.org/10.1088/0253-6102/67/5/479 doi: 10.1088/0253-6102/67/5/479
    [8] Y. Pandir, H. H. Duzgun, New exact solutions of time fractional Gardner equation by using new version of $F$-expansion method, Commun. Theor. Phys., 67 (2017), 9. https://doi.org/10.1088/0253-6102/67/1/9 doi: 10.1088/0253-6102/67/1/9
    [9] Sirendaoreji, S. Jiong, A direct method for solving sine-Gordon type equations, Phys. Lett. A, 298 (2002), 133–139. https://doi.org/10.1016/S0375-9601(02)00513-3 doi: 10.1016/S0375-9601(02)00513-3
    [10] Z. T. Fu, S. K. Liu, S. D. Liu, Exact solutions to double and triple sinh-Gordon equations, Z. Naturforsch. A, 59 (2004), 933–937. https://doi.org/10.1515/zna-2004-1207 doi: 10.1515/zna-2004-1207
    [11] S. K. Liu, Z. T. Fu, S. D. Liu, Exact solutions to sine-Gordon-type equations, Phys. Lett. A, 351 (2006), 59–63. https://doi.org/10.1016/j.physleta.2005.10.054 doi: 10.1016/j.physleta.2005.10.054
    [12] W. G. Wei, Discrete singular convolution for the sine-Gordon equation, Phys. D, 137 (2000), 247–259. https://doi.org/10.1016/S0167-2789(99)00186-4 doi: 10.1016/S0167-2789(99)00186-4
    [13] A. M. Wazwaz, Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations, Chaos Solitons Fract., 28 (2006), 127–135. https://doi.org/10.1016/j.chaos.2005.05.017 doi: 10.1016/j.chaos.2005.05.017
    [14] A. M. Wazwaz, Travelling wave solutions for combined and double combined sine-cosine-Gordon equations by the variable separated ODE method, Appl. Math. Comput., 177 (2016), 755–760. https://doi.org/10.1016/j.amc.2005.09.104 doi: 10.1016/j.amc.2005.09.104
    [15] A. Grauel, Sinh-Gordon equation, Painlevé property and Bäcklund transformation, Phys. A, 132 (1985), 557–568. https://doi.org/10.1016/0378-4371(85)90027-5 doi: 10.1016/0378-4371(85)90027-5
    [16] A. M. Wazwaz, Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE method, Comput. Math. Appl., 50 (2005), 1685–1696. https://doi.org/10.1016/j.camwa.2005.05.010 doi: 10.1016/j.camwa.2005.05.010
    [17] S. Q. Tang, W. T. Huang, Bifurcations of travelling wave solutions for the generalized double sinh-Gordon equation, Appl. Math. Comput., 189 (2007), 1774–1781. https://doi.org/10.1016/j.amc.2006.12.082 doi: 10.1016/j.amc.2006.12.082
    [18] H. Kheiri, A. Jabbari, Exact solutions for the double sinh-Gordon and generalized form of the double sinh-Gordon equations by using $(G'/G)$-expansion method, Turkish J. Phys., 34 (2010), 73–82. https://doi.org/10.3906/fiz-0909-7 doi: 10.3906/fiz-0909-7
    [19] B. He, W. G. Rui, Y. Long, New exact double periodic wave and complex wave solutions for a generalized sinh-Gordon equation, Appl. Math. Comput., 229 (2014), 159–172. https://doi.org/10.1016/j.amc.2013.12.040 doi: 10.1016/j.amc.2013.12.040
    [20] A. Neirameh, Exact solutions of the generalized sinh-Gordon equation, Comput. Math. Math. Phys., 56 (2016), 1336–1342. https://doi.org/10.1134/S0965542516070149 doi: 10.1134/S0965542516070149
    [21] A. Arai, Exactly solvable supersymmetric quantum mechanics, J. Math. Anal. Appl., 158 (1991), 63–79. https://doi.org/10.1016/0022-247X(91)90267-4 doi: 10.1016/0022-247X(91)90267-4
    [22] M. S. Abdalla, H. Eleuch, Exact analytic solutions of the Schrödinger equations for some modifed $q$-deformed potentials, J. Appl. Phys., 115 (2014), 234906. https://doi.org/10.1063/1.4883296 doi: 10.1063/1.4883296
    [23] Y. G. Shu, J. C. Chen, L. X. Chen, Bose-Einstein condensation of a $q$-deformed ideal Bose gas, Phys. Lett. A, 292 (2002), 309–314. https://doi.org/10.1016/S0375-9601(01)00816-7 doi: 10.1016/S0375-9601(01)00816-7
    [24] S. M. Ikhdair, Rotation and vibration of diatomic molecule in the spatially-dependent mass Schrödinger equation with generalized $q$-deformed Morse potential, Chem. Phys., 361 (2009), 9–17. https://doi.org/10.1016/j.chemphys.2009.04.023 doi: 10.1016/j.chemphys.2009.04.023
    [25] H. Eleuch, Some analytical solitary wave solutions for the generalized $q$-deformed sinh-Gordon equation: $\frac{\partial^{2}\theta}{\partial z\partial \xi} = \alpha[\sinh_{q}(\beta\theta^{\gamma})]^{p}-\delta$, Adv. Math. Phys., 2018 (2018), 1–7. https://doi.org/10.1155/2018/5242757 doi: 10.1155/2018/5242757
    [26] N. Raza, S. Arshed, H. I. Alrebdi, A. H. Abdel-Aty, H. Eleuch, Abundant new optical soliton solutions related to $q$-deformed sinh-Gordon model using two innovative integration architectures, Results Phys., 35 (2022), 105358. https://doi.org/10.1016/j.rinp.2022.105358 doi: 10.1016/j.rinp.2022.105358
    [27] K. K. Ali, A. H. Abdel-Aty, An extensive analytical and numerical study of the generalized $q$-deformed sinh-Gordon equation, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.05.034 doi: 10.1016/j.joes.2022.05.034
    [28] K. K. Ali, A. H. Abdel-Aty, H. Eleuch, New soliton solutions for the conformal time derivative $q$-deformed physical model, Results Phys., 42 (2022), 105993. https://doi.org/10.1016/j.rinp.2022.105993 doi: 10.1016/j.rinp.2022.105993
    [29] D. M. Cao, C. Li, F. J. He, Exact solutions to the space-time fraction Whitham-Broer-Kaup equation, Modern Phys. Lett. B, 34 (2020), 2050178. https://doi.org/10.1142/S021798492050178X doi: 10.1142/S021798492050178X
    [30] B. Guan, S. B. Li, S. Q. Chen, L. G. Zhang, C. H. Wang, The classification of single traveling wave solutions to coupled time-fractional KdV-Drinfel'd-Sokolov-Wilson system, Results Phys., 13 (2019), 102291. https://doi.org/10.1016/j.rinp.2019.102291 doi: 10.1016/j.rinp.2019.102291
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(730) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog