This paper introduces a comprehensive class of models known as Markov-Switching Threshold Stochastic Volatility (MS-TSV) models, specifically designed to address asymmetry and the leverage effect observed in the volatility of financial time series. Extending the classical threshold stochastic volatility model, our approach expresses the parameters governing log-volatility as a function of a homogeneous Markov chain with a finite state space. The primary goal of our proposed model is to capture the dynamic behavior of volatility driven by a Markov chain, enabling the accommodation of both gradual shifts due to economic forces and sudden changes caused by abnormal events. Following the model's definition, we derive several probabilistic properties of the MS-TSV models, including strict (or second-order) stationarity, causality, ergodicity, and the computation of higher-order moments. Additionally, we provide the expression for the covariance function of the squared (or powered) process. Furthermore, we establish the limit theory for the Quasi-Maximum Likelihood Estimator (QMLE) and demonstrate the strong consistency of this estimator. Finally, a simulation study is presented to assess the performance of the proposed estimation method.
Citation: Ahmed Ghezal, Mohamed balegh, Imane Zemmouri. Markov-switching threshold stochastic volatility models with regime changes[J]. AIMS Mathematics, 2024, 9(2): 3895-3910. doi: 10.3934/math.2024192
This paper introduces a comprehensive class of models known as Markov-Switching Threshold Stochastic Volatility (MS-TSV) models, specifically designed to address asymmetry and the leverage effect observed in the volatility of financial time series. Extending the classical threshold stochastic volatility model, our approach expresses the parameters governing log-volatility as a function of a homogeneous Markov chain with a finite state space. The primary goal of our proposed model is to capture the dynamic behavior of volatility driven by a Markov chain, enabling the accommodation of both gradual shifts due to economic forces and sudden changes caused by abnormal events. Following the model's definition, we derive several probabilistic properties of the MS-TSV models, including strict (or second-order) stationarity, causality, ergodicity, and the computation of higher-order moments. Additionally, we provide the expression for the covariance function of the squared (or powered) process. Furthermore, we establish the limit theory for the Quasi-Maximum Likelihood Estimator (QMLE) and demonstrate the strong consistency of this estimator. Finally, a simulation study is presented to assess the performance of the proposed estimation method.
[1] | J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57 (1989), 357–384. https://doi.org/10.2307/1912559 doi: 10.2307/1912559 |
[2] | J. D. Hamilton, Analysis of time series subject to changes in regime, J. Economet., 45 (1990), 39–70. https://doi.org/10.1016/0304-4076(90)90093-9 doi: 10.1016/0304-4076(90)90093-9 |
[3] | M. Cavicchioli, Spectral density of Markov-switching $VARMA$ models, Economic Lett., 121 (2013), 218–220. https://doi.org/10.1016/j.econlet.2013.07.022 doi: 10.1016/j.econlet.2013.07.022 |
[4] | M. Cavicchioli, Asymptotic Fisher information matrix of Markov switching $VARMA$ models, J. Multivariate Anal., 157 (2017b), 124–135. https://doi.org/10.1016/j.jmva.2017.03.004 doi: 10.1016/j.jmva.2017.03.004 |
[5] | M. Cavicchioli, Higher order moments of Markov switching $VARMA$ models, Economet. Theory, 33 (2017a), 1502–1515. https://doi.org/10.1017/S0266466616000438 doi: 10.1017/S0266466616000438 |
[6] | R. Stelzer, On Markov-switching $ARMA$ processes: Stationarity, existence of moments and geometric ergodicity, Economet. Theory, 25 (2009), 43–62. https://doi.org/10.1017/S0266466608090026 doi: 10.1017/S0266466608090026 |
[7] | M. Cavicchioli, Markov switching $GARCH$ models: higher order moments, kurtosis measures and volatility evaluation in recessions and pandemic, J. Business Economic Statist., 40 (2022), 1772–1783. https://doi.org/10.1080/07350015.2021.1974459 doi: 10.1080/07350015.2021.1974459 |
[8] | M. Haas, S. Mittnik, M. S. Paolella, A new approach to Markov-switching $GARCH$ models, J. Financial Economet., 2 (2004), 493–530. https://doi.org/10.1093/jjfinec/nbh020 doi: 10.1093/jjfinec/nbh020 |
[9] | A. Bibi, A. Ghezal, Minimum distance estimation of Markov-switching bilinear processes, Statistics, 50 (2016), 1290–1309. https://doi.org/10.1080/02331888.2016.1229783 doi: 10.1080/02331888.2016.1229783 |
[10] | A. Bibi, A. Ghezal, On the Markov-switching bilinear processes: stationarity, higher-order moments and $\beta -$mixing, Stochast. Int. J. Prob. Stochast. Proc., 87 (2015), 919–945. https://doi.org/10.1080/17442508.2015.1019881 doi: 10.1080/17442508.2015.1019881 |
[11] | A. Bibi, A. Ghezal, Consistency of quasi-maximum likelihood estimator for Markov-switching bilinear time series models, Stat. Prob. Lett., 100 (2015), 192–202. https://doi.org/10.1016/j.spl.2015.02.010 doi: 10.1016/j.spl.2015.02.010 |
[12] | A. Ghezal, Spectral representation of Markov-switching bilinear processes, São Paulo J. Math. Sci., 2023. https://doi.org/10.1007/s40863-023-00380-w |
[13] | A. Ghezal, I. Zemmouri, The bispectral representation of Markov switching bilinear models, Commun. Faculty Sci. Uni. Ankara Series $A1$ Math. Statist., http://dx.doi.org/10.31801/cfsuasmas.1232916 |
[14] | A. Bibi, A. Ghezal, Markov-switching BILINEAR-GARCH models: Structure and estimation, Commun. Stat. Theory Meth., 47 (2018), 307–323. https://doi.org/10.1080/03610926.2017.1303732 doi: 10.1080/03610926.2017.1303732 |
[15] | A. Ghezal, I. Zemmouri, Estimating MS-BLGARCH models using recursive method, Pan-Amer. J. Math., 2 (2023), 1–7. https://doi.org/10.28919/cpr-pajm/2-6 doi: 10.28919/cpr-pajm/2-6 |
[16] | A. Ghezal, A doubly Markov switching $AR$ model: Some probabilistic properties and strong consistency, J. Math. Sci., 71 (2023), 66–75. https://doi.org/10.1007/s10958-023-06262-y doi: 10.1007/s10958-023-06262-y |
[17] | A. Ghezal, I. Zemmouri, On the Markov-switching autoregressive stochastic volatility processes, Sema J., 2023. https://doi.org/10.1007/s40324-023-00329-1 |
[18] | A. Ghezal, I. Zemmouri, On Markov-switching asymmetric $\log GARCH$ models: Stationarity and estimation, Filomat, 37 (2023), 1–19. |
[19] | A. Ghezal, I. Zemmouri, M-estimation in periodic Threshold GARCH models: Consistency and asymptotic normality, Miskolc Math. Notes, unpublished. |
[20] | A. Ghezal, QMLE for periodic time-varying asymmetric $\log GARCH $ models, Commun. Math. Statist., 9 (2021), 273–297. https://doi.org/10.1007/s40304-019-00193-4 doi: 10.1007/s40304-019-00193-4 |
[21] | A. Diop, D. Guegan, Tail behavior of a threshold autoregressive stochastic volatility model, Extremes, 7 (2004), 367–375. https://doi.org/10.1007/s10687-004-3482-y doi: 10.1007/s10687-004-3482-y |
[22] | X. Maoa, E. Ruiz, H. Veiga, Threshold stochastic volatility: Properties and forecasting, Int. J. Forecast., 33 (2017), 1105–1123. https://doi.org/10.1016/j.ijforecast.2017.07.001 doi: 10.1016/j.ijforecast.2017.07.001 |
[23] | M. EC. P. So, K. Lam, W. K. Li, A stochastic volatility model with Markov switching, J. Business Economic Statist., 16 (1998), 244–253. https://doi.org/10.1080/07350015.1998.10524758 doi: 10.1080/07350015.1998.10524758 |
[24] | R. Casarin, Bayesian inference for generalised Markov switching stochastic volatility models, In: Conference Materials at the 4th International Workshop on Objective Bayesian Methodology, CNRS, Aussois, 2003. |
[25] | P. Bougerol, N. Picard, Strict stationarity of generalized autoregressive processes, Ann. Prob., 20 (1992), 1714–1730. https://doi.org/10.1214/aop/1176989526 doi: 10.1214/aop/1176989526 |
[26] | C. Francq, J. M. Zakoïan, Deriving the autocovariances of powers of Markov-switching $GARCH$ models, with applications to statistical inference, Comput. Statist. Data Anal., 52 (2008), 3027–3046. https://doi.org/10.1016/j.csda.2007.08.003 doi: 10.1016/j.csda.2007.08.003 |
[27] | M. T. Vo, Regime-switching stochastic volatility: Evidence from the crude oil market, Energy Economics, 31 (2009), 779–788. https://doi.org/10.1016/j.eneco.2009.05.001 doi: 10.1016/j.eneco.2009.05.001 |
[28] | Y. Xie, Consistency of maximum likelihood estimators for the regimes witching $GARCH$ model, Statist. J. Theoret. Appl. Statist., 43 (2009), 153–165. https://doi.org/10.1080/02331880701442619 doi: 10.1080/02331880701442619 |
[29] | L. Calvet, A. Fisher, Forecasting multifractal volatility, J. Economet., 105 (2001), 27–58. https://doi.org/10.1016/S0304-4076(01)00069-0 doi: 10.1016/S0304-4076(01)00069-0 |
[30] | L. Calvet, A. Fisher, Regime switching and the estimation of multifractal processes, J. Financial Economet., 2 (2004), 49–83. https://doi.org/10.1093/jjfinec/nbh003 doi: 10.1093/jjfinec/nbh003 |
[31] | T. Lux, The Markov-switching multifractal model of asset returns: $GMM$ estimation and linear forecasting of volatility, J. Business Economic Statist., 26 (2008), 194–210. https://www.jstor.org/stable/27638974 |