Research article

Distribution of values of Hardy sums over Chebyshev polynomials

  • Received: 24 November 2023 Revised: 31 December 2023 Accepted: 05 January 2024 Published: 10 January 2024
  • MSC : 11F20, 11B83

  • This paper mainly studied the distribution of values of Hardy sums involving Chebyshev polynomials. By using the method of analysis and the arithmetic properties of Hardy sums and Chebyshev polynomials of the first kind, we obtained a sharp asymptotic formula for the hybrid mean value of Hardy sums $ S_5(h, q) $ involving Chebyshev polynomials of the first kind. In addition, we also gave the value of Hardy sums $ S(h, q) $ and $ S_{3}(h, q) $ involving Chebyshev polynomials. Finally, we found the reciprocal formulas of $ S_{3}(h, q) $ and $ S_{4}(h, q) $ involving Chebyshev polynomials of the first kind.

    Citation: Jiankang Wang, Zhefeng Xu, Minmin Jia. Distribution of values of Hardy sums over Chebyshev polynomials[J]. AIMS Mathematics, 2024, 9(2): 3788-3797. doi: 10.3934/math.2024186

    Related Papers:

  • This paper mainly studied the distribution of values of Hardy sums involving Chebyshev polynomials. By using the method of analysis and the arithmetic properties of Hardy sums and Chebyshev polynomials of the first kind, we obtained a sharp asymptotic formula for the hybrid mean value of Hardy sums $ S_5(h, q) $ involving Chebyshev polynomials of the first kind. In addition, we also gave the value of Hardy sums $ S(h, q) $ and $ S_{3}(h, q) $ involving Chebyshev polynomials. Finally, we found the reciprocal formulas of $ S_{3}(h, q) $ and $ S_{4}(h, q) $ involving Chebyshev polynomials of the first kind.



    加载中


    [1] T. M. Apostol, Modular functions and Dirichlet series in number theory, New York: Springer-Verlag, 1976.
    [2] L. P. Bedratyuk, N. B. Lunio, Derivations and identities for Chebyshev polynomials, Ukr. Math. J., 73 (2022), 1175–1188. https://doi.org/10.1007/s11253-022-01985-8 doi: 10.1007/s11253-022-01985-8
    [3] B. C. Berndt, Generalized Dedekind eta-functions and generalized Dedekind sums, T. Am. Math. Soc., 178 (1973), 495–508. https://doi.org/10.2307/1996714 doi: 10.2307/1996714
    [4] B. C. Berndt, Analytic eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math., 303/304 (1978), 332–365. https://doi.org/10.1515/crll.1978.303-304.332 doi: 10.1515/crll.1978.303-304.332
    [5] J. B. Conrey, E. Fransen, R. Klein, C. Scott, Mean values of Dedekind sums, J. Number Theory, 56 (1996), 214–226. https://doi.org/10.1006/jnth.1996.0014 doi: 10.1006/jnth.1996.0014
    [6] M. C. Dağlı, New identities involving certain Hardy sums and two-term exponential sums, Indian J. Pure Ap. Math., 54 (2023), 841–847. https://doi.org/10.1007/s13226-022-00302-0 doi: 10.1007/s13226-022-00302-0
    [7] M. C. Dağlı, H. Sever, On the mean value of the generalized Dedekind sum and certain generalized Hardy sums weighted by the Kloosterman sum, Ukr. Math. J., 75 (2023), 889–896. https://doi.org/10.1007/s11253-023-02234-2 doi: 10.1007/s11253-023-02234-2
    [8] K. Dilcher, J. L. Meyer, Dedekind sums and some generalized Fibonacci and Lucas sequences, Fibonacci Quart., 48 (2010), 260–264.
    [9] E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, Numerical approximations for fractional difusion equations via a Chebyshev spectral-tau method, Cent. Eur. J. Phys., 11 (2013), 1494–1503. https://doi.org/10.2478/s11534-013-0264-7 doi: 10.2478/s11534-013-0264-7
    [10] X. Y. Du, L. Zhang, On the Dedekind sums and its new reciprocity formula, Miskolc Math. Notes, 19 (2018), 235–239. https://doi.org/10.18514/mmn.2018.1664 doi: 10.18514/mmn.2018.1664
    [11] W. J. Guan, X. X. Li, The Dedekind sums and first kind Chebyshev polynomials, Acta Math. Sin., 62 (2019), 219–224.
    [12] W. J. Guo, Y. K. Ma, T. P. Zhang, New identities involving Hardy sums $S_{3}(h, k)$ and general Kloosterman sums, AIMS Math., 6 (2021), 1596–1606. https://doi.org/10.3934/math.2021095 doi: 10.3934/math.2021095
    [13] H. N. Liu, W. P. Zhang, On certain Hardy sum and their $2m$-th power mean, Osaka J. Math., 41 (2004), 745–758. https://doi.org/10.18910/10379 doi: 10.18910/10379
    [14] C. L. Lee, K. B. Wong, On Chebyshev's polynomials and certain combinatorial identities, B. Malays. Math. Sci. So., 34 (2011), 279–286.
    [15] W. Peng, T. P. Zhang, Some identities involving certain Hardy sum and Kloosterman sum, J. Number Theory, 165 (2016), 355–362. https://doi.org/10.1016/j.jnt.2016.01.028
    [16] H. Rademacher, E. Grosswald, Dedekind sums, Carus Mathematical Monographs, 1972.
    [17] R. Sitaramachandrarao, Dedekind and Hardy sums, Acta Arith., 48 (1987), 325–340. https://doi.org/10.4064/aa-48-4-325-340 doi: 10.4064/aa-48-4-325-340
    [18] Q. Tian, Y. Wang, On the hybrid mean value of generalized Dedekind sums, generalized Hardy sums and Kloosterman sums, B. Korean Math. Soc., 60 (2023), 611–622. https://doi.org/10.4134/BKMS.b210789 doi: 10.4134/BKMS.b210789
    [19] Z. F. Xu, W. P. Zhang, The mean value of Hardy sums over short intervals, P. Roy. Soc. Edinb. A, 137 (2007), 885–894. https://doi.org/10.1017/S0308210505000648 doi: 10.1017/S0308210505000648
    [20] W. P. Zhang, T. T. Wang, Two identities involving the integral of the first kind Chebyshev polynomials, B. Math. Soc. Sci. Math., 60 (2017), 91–98.
    [21] W. P. Zhang, Y. Yi, On the Fibonacci numbers and the Dedekind sums, Fibonacci Quart., 38 (2000), 223–226.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(967) PDF downloads(69) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog