Research article

Soft nodec spaces

  • Received: 21 November 2023 Revised: 11 December 2023 Accepted: 19 December 2023 Published: 04 January 2024
  • MSC : 54E99, 54F65

  • Following van Douwen, we call a soft topological space soft nodec if every soft nowhere dense subset of it is soft closed. This paper considers soft nodec spaces, which contain soft submaximal and soft door spaces. We investigate the basic properties and characterizations of soft nodec spaces. More precisely, we show that a soft nodec space can be written as a union of two disjoint soft closed soft dense (or soft open) soft nodec subspaces. Then, we study the behavior of soft nodec spaces under various operations, including the following: taking soft subspaces, soft products, soft topological sums, and images under specific soft functions with the support of appropriate counterexamples. Additionally, we show that the Krull dimension of a soft nodec soft $ T_{0} $-space is less than or equal to one. After that, we present some connections among soft nodec, soft strong nodec, and soft compact spaces. Finally, we successfully determine a condition under which the soft one-point compactification of a soft space is soft nodec if and only if the soft space is soft strong nodec.

    Citation: Mesfer H. Alqahtani, Zanyar A. Ameen. Soft nodec spaces[J]. AIMS Mathematics, 2024, 9(2): 3289-3302. doi: 10.3934/math.2024160

    Related Papers:

  • Following van Douwen, we call a soft topological space soft nodec if every soft nowhere dense subset of it is soft closed. This paper considers soft nodec spaces, which contain soft submaximal and soft door spaces. We investigate the basic properties and characterizations of soft nodec spaces. More precisely, we show that a soft nodec space can be written as a union of two disjoint soft closed soft dense (or soft open) soft nodec subspaces. Then, we study the behavior of soft nodec spaces under various operations, including the following: taking soft subspaces, soft products, soft topological sums, and images under specific soft functions with the support of appropriate counterexamples. Additionally, we show that the Krull dimension of a soft nodec soft $ T_{0} $-space is less than or equal to one. After that, we present some connections among soft nodec, soft strong nodec, and soft compact spaces. Finally, we successfully determine a condition under which the soft one-point compactification of a soft space is soft nodec if and only if the soft space is soft strong nodec.



    加载中


    [1] R. Abu-Gdairi, A. A. El-Atik, M. K. El-Bably, Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data, AIMS Mathematics, 8 (2023), 26945–26967. https://doi.org/10.3934/math.20231379 doi: 10.3934/math.20231379
    [2] S. Al Ghour, Z. A. Ameen, On soft submaximal spaces, Heliyon, 8 (2022), E10574. https://doi.org/10.1016/j.heliyon.2022.e10574 doi: 10.1016/j.heliyon.2022.e10574
    [3] M. H. Alqahtani, Z. A. Ameen, On soft door and soft submaximal spaces, submitted for publication.
    [4] M. Aktas, A. Ozkan, Soft $\alpha$-open sets and soft $\alpha$-continuous functions, Abstr. Appl. Anal., 2014 (2014), 891341. https://doi.org/10.1155/2014/891341 doi: 10.1155/2014/891341
    [5] S. Al Ghour, Soft-openness and soft-Lindelofness, Int. J. Fuzzy Log. Inte., 23 (2023), 181–191. https://doi.org/10.5391/IJFIS.2023.23.2.181 doi: 10.5391/IJFIS.2023.23.2.181
    [6] S. Al Ghour, Z. A. Ameen, Maximal soft compact and maximal soft connected topologies, Appl. Comput. Intell. S., 2022 (2022), 9860015. https://doi.org/10.1155/2022/9860015 doi: 10.1155/2022/9860015
    [7] M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
    [8] Z. A. Ameen, S. Al Ghour, Cluster soft sets and cluster soft topologies, Comp. Appl. Math., 42 (2023), 337. https://doi.org/10.1007/s40314-023-02476-7 doi: 10.1007/s40314-023-02476-7
    [9] Z. A. Ameen, M. H. Alqahtani, Some classes of soft functions defined by soft open sets modulo soft sets of the first category, Mathematics, 11 (2023), 4368. https://doi.org/10.3390/math11204368 doi: 10.3390/math11204368
    [10] Z. A. Ameen, M. H. Alqahtani, Baire category soft sets and their symmetric local properties, Symmetry, 15 (2023), 1810. https://doi.org/10.3390/sym15101810 doi: 10.3390/sym15101810
    [11] Z. A. Ameen, M. H. Alqahtani, Congruence representations via soft ideals in soft topological spaces, Axioms, 12 (2023), 1015. https://doi.org/10.3390/axioms12111015 doi: 10.3390/axioms12111015
    [12] Z. A. Ameen, A. B. Khalaf, The invariance of soft Baire spaces under soft weak functions, J. Interdiscip. Math., 25 (2022), 1295–1306. https://doi.org/10.1080/09720502.2021.1978999 doi: 10.1080/09720502.2021.1978999
    [13] B. A. Asaad, Results on soft extremally disconnectedness of soft topological spaces, J. Math. Comput. Sci., 17 (2017), 448–464. http://doi.org/10.22436/jmcs.017.04.02 doi: 10.22436/jmcs.017.04.02
    [14] S. Atmaca, Compactification of soft topological spaces, Journal of New Theory, 12 (2016), 23–28.
    [15] A. Aygünoglu, H. Aygün, Some notes on soft topological spaces, Neural Comput. Applic., 21 (2012), 113–119. https://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
    [16] A. A. Azzam, Z. A. Ameen, T. M. Al-shami, M. E. El-Shafei, Generating soft topologies via soft set operators, Symmetry, 14 (2022), 914. https://doi.org/10.3390/sym14050914 doi: 10.3390/sym14050914
    [17] S. Bayramov, C. G. Aras, A new approach to separability and compactness in soft topological spaces, TWMS J. Pure Appl. Math., 9 (2018), 82–93.
    [18] N. Çağman, S. Karataş, S. Enginoglu, Soft topology, Comput. Math. Appl., 62 (2011), 351–358. https://doi.org/10.1016/j.camwa.2011.05.016 doi: 10.1016/j.camwa.2011.05.016
    [19] S. Das, S. Samanta, Soft metric, Annals of Fuzzy Mathematics and Informatics, 6 (2013), 77–94.
    [20] M. A. El-Gayar, R. Abu-Gdairi, M. K. El-Bably, D. I. Taher, Economic decision-making using rough topological structures, J. Math.-UK, 2023 (2023), 4723233. https://doi.org/10.1155/2023/4723233 doi: 10.1155/2023/4723233
    [21] M. El Sayed, M. A. El Safty, M. K. El-Bably, Topological approach for decision-making of COVID-19 infection via a nano-topology model, AIMS Mathematics, 6 (2021), 7872–7894. https://doi.org/10.3934/math.2021457 doi: 10.3934/math.2021457
    [22] S. Hussain, B. Ahmad, Some properties of soft topological spaces, Comput. Math. Appl., 62 (2011), 4058–4067. https://doi.org/10.1016/j.camwa.2011.09.051 doi: 10.1016/j.camwa.2011.09.051
    [23] G. Ilango, M. Ravindran, On soft preopen sets in soft topological spaces, International Journal of Mathematics Research, 5 (2013), 399–409.
    [24] A. Kharal, B. Ahmad, Mappings on soft classes, New Math. Nat. Comput., 7 (2011), 471–481. https://doi.org/10.1142/S1793005711002025 doi: 10.1142/S1793005711002025
    [25] F. Lin, Soft connected spaces and soft paracompact spaces, International Journal of Mathematical and Computational Sciences, 7 (2013), 277–283. https://doi.org/10.5281/zenodo.1335680 doi: 10.5281/zenodo.1335680
    [26] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
    [27] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [28] S. Nazmul, S. K. Samanta, Neighbourhood properties of soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 6 (2013), 1–15.
    [29] T. Y. Öztürk, S. Bayramov, Topology on soft continuous function spaces, Math. Comput. Appl., 22 (2017), 32. https://doi.org/10.3390/mca22020032 doi: 10.3390/mca22020032
    [30] D. Pei, D. Miao, From soft sets to information systems, 2005 IEEE International Conference on Granular Computing, Beijing, China, 2005,617–621. https://doi.org/10.1109/GRC.2005.1547365
    [31] M. Riaz, Z. Fatima, Certain properties of soft metric spaces, The Journal of Fuzzy Mathematics, 25 (2017), 543–560.
    [32] R. Şahin, Soft compactification of soft topological spaces: soft star topological spaces, Annals of Fuzzy Mathematics and Informatics, 10 (2015), 447–464.
    [33] I. M. Sabiha, On weak soft $N$-open sets and weak soft $\widetilde{D}_{N}$-sets in soft topological spaces, Journal of Al-Nahrain University, 20 (2017), 131–141.
    [34] S. Hussain, B. Ahmad, Soft separation axioms in soft topological spaces, Hacet. J. Math. Stat., 44 (2015), 559–568.
    [35] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
    [36] E. K. van Douwen, Applications of maximal topologies, Topol. Appl., 51 (1993), 125–139. https://doi.org/10.1016/0166-8641(93)90145-4 doi: 10.1016/0166-8641(93)90145-4
    [37] N. Xie, Soft points and the structure of soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 10 (2015), 309–322.
    [38] S. Yüksel, N. Tozlu, Z. G. Ergül, Soft regular generalized closed sets in soft topological spaces, International Journal of Mathematical Analysis, 8 (2014), 355–367. http://doi.org/10.12988/ijma.2014.4125 doi: 10.12988/ijma.2014.4125
    [39] I. Zorlutuna, M. Akdag, W. Min, S. Atmaca, Remarks on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 3 (2012), 171–185.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(823) PDF downloads(76) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog