This research paper addressed a significant knowledge gap in the field of complex analysis by introducing a pioneering category of $ q $-starlike and $ q $-convex functions intricately interconnected with $ (u, v) $-symmetrical functions. Recognizing the limited exploration of these relationships in existing literature, the authors delved into the new classes $ \mathcal{S}_q(\alpha, u, v) $ and $ \mathcal{T}_q(\alpha, u, v) $. The main contribution of this work was the establishment of a framework that amalgamates $ q $-starlikeness and $ q $-convexity with the symmetry conditions imposed by $ (u, v) $-symmetrical functions. This comprehensive study include coefficient estimates, convolution conditions, and the properties underpinning the $ (\rho, q) $-neighborhood, thereby enriching the understanding of these novel function classes.
Citation: Hanen Louati, Afrah Al-Rezami, Erhan Deniz, Abdulbasit Darem, Robert Szasz. Application of $ q $-starlike and $ q $-convex functions under $ (u, v) $-symmetrical constraints[J]. AIMS Mathematics, 2024, 9(12): 33353-33364. doi: 10.3934/math.20241591
This research paper addressed a significant knowledge gap in the field of complex analysis by introducing a pioneering category of $ q $-starlike and $ q $-convex functions intricately interconnected with $ (u, v) $-symmetrical functions. Recognizing the limited exploration of these relationships in existing literature, the authors delved into the new classes $ \mathcal{S}_q(\alpha, u, v) $ and $ \mathcal{T}_q(\alpha, u, v) $. The main contribution of this work was the establishment of a framework that amalgamates $ q $-starlikeness and $ q $-convexity with the symmetry conditions imposed by $ (u, v) $-symmetrical functions. This comprehensive study include coefficient estimates, convolution conditions, and the properties underpinning the $ (\rho, q) $-neighborhood, thereby enriching the understanding of these novel function classes.
[1] | P. Liczberski, J. Polubinski, On $(j, k)$-symmtrical functions, Math. Bohem.. 120 (1995), 13–28. |
[2] | F. H. Jackson, On $q$-functions and a certain difference operator, T. Roy. Soc. Edinb., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[3] | F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[4] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Elliptic Equ., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407 |
[5] | M. Naeem, S. Hussain, S. Khan, T. Mahmood, M. Darus, Z. Shareef, Janowski type $q$-convex and $q$-close-to-convex functions associated with $q$-conic domain, Mathematics, 8 (2020), 440. https://doi.org/10.3390/math8030440 doi: 10.3390/math8030440 |
[6] | H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 292. https://doi.org/10.3390/sym11020292 doi: 10.3390/sym11020292 |
[7] | M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43 (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5 |
[8] | F. Alsarari, M. I. Faisal, A. A. Alzulaibani, Geometric properties of certain classes of analytic functions with respect to (x, y)-symmetric points, Mathematics, 11 (2023), 4180. https://doi.org/10.3390/math11194180 doi: 10.3390/math11194180 |
[9] | F. Alsarari, S. Alzahrani, Convolution properties of q-Janowski-type functions associated with $(x, y)$-symmetrical functions. Mathematics, 14 (2022), 1406. https://doi.org/10.3390/sym14071406 |
[10] | B. Khan, Z. G. Liu, T. G. Shaba, S. Araci, N. Khan, M. G. Khan, Applications of $q$-derivative operator to the subclass of bi-univalent functions involving $q$-Chebyshev polynomials, J. Math., 2022 (2022), 8162182. https://doi.org/10.1155/2022/8162182 doi: 10.1155/2022/8162182 |
[11] | H. M. Srivastava, Operators of basic (or $q-$) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[12] | F. AlSarari, S. Latha, T. Bulboacă, On Janowski functions associated with $(m, n)$-symmetric points, J. Taibah Univ. Sci., 13 (2019), 972–978. https://doi.org/10.1080/16583655.2019.1665487 doi: 10.1080/16583655.2019.1665487 |
[13] | H. Shamsan, F. S. M. Alsarari, S. Latha, Few results of $q$-sakaguchi type functions, Palestin. J. Math., 9 (2020), 194–199. |
[14] | F. Al Sarari, S. Latha, B. A. Frasin, Convex and starlike functions with respect to $(j, k)$-symmetric points, Appl. Math. E-Notes 17 (2017), 10–18. |
[15] | F. Al Sarari, S. Latha, A new class of $(j, k)$-symmetric harmonic functions, Stud. Univ. Babs-Bolyai Math., 60 (2015), 553–559. |
[16] | S. Agrawal, S. K. Sahoo, A generalization of starlike functions of order alpha, Hokkaido Math. J., 46 (2017), 15–27. |
[17] | M. I. S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), 374–408. https://doi.org/10.2307/1968451 doi: 10.2307/1968451 |
[18] | R. H. Nevanlinna, Über die konforme Abbildung von Sterngebieten, 1921. |
[19] | K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72–75. https://doi.org/10.2969/jmsj/01110072 doi: 10.2969/jmsj/01110072 |
[20] | A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8 (1957), 598–601. https://doi.org/10.1090/S0002-9939-1957-0086879-9 doi: 10.1090/S0002-9939-1957-0086879-9 |
[21] | S. Ruschewyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), 521–527. https://doi.org/10.1090/S0002-9939-1981-0601721-6 doi: 10.1090/S0002-9939-1981-0601721-6 |
[22] | A. W. Goodman, Univalent functions, Tampa, Fla, USA: Mariner Publishing, 1983. |