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1. Introduction

Geometric function theory is a fascinating branch of complex analysis that delves into the beautiful
interplay between complex-valued functions and their geometric properties. It centers around
understanding how these functions distort and transform shapes in the complex plane. Let F̃ (Ω)
denote the space of all analytic functions in the open unit disk Ω = {ϖ ∈ C : |ϖ| < 1} and let F̃ denote
the class of functions ℏ ∈ F̃ (Ω) which has the form

ℏ(ϖ) = ϖ +
∞∑

m=2

amϖ
m. (1.1)

Let S̃ denote the subclass of F̃ that includes all univalent functions within the domain Ω. The
convolution, or Hadamard product, of two analytic functions ℏ and g, both of which belong to F̃ , is
defined as follows: here, ℏ is given by (1.1), while the function g takes the form g(ϖ) = ϖ+

∑∞
m=2 bmϖ

m,
as

(ℏ ∗ g)(ϖ) = ϖ +
∞∑

m=2

ambmϖ
m.

This research aims to define new starlike functions using the concepts of (u, v)-symmetrical
functions and quantum calculus. Before delving into the discussion on (u, v)-symmetrical functions
and quantum calculus (q-calculus), let us briefly review the essential concepts and symbols related to
these theories.

The theory of (u, v)-symmetrical functions is a specific area within geometric function theory that
explores functions exhibiting a unique kind of symmetry. Regular symmetric functions treat all
variables alike, but (u, v)-symmetrical functions introduce a twist. Here, v denotes a fixed positive
integer, and u can range from 0 to v − 1, (see [1]). A domain D̃ is said to be v-fold symmetric if a
rotation of D̃ about the origin through an angle 2π

v carries D̃ onto itself. A function ℏ is said to be
v-fold symmetric in D̃ if for every ϖ in D̃ and ℏ

(
e

2πi
v ϖ

)
= e

2πi
v ℏ(ϖ). A function ℏ is considered

(u, v)-symmetrical if for any element ϖ ∈ D̃ and a complex number ε with a special property
(ε = e

2πi
v ), the following holds:

ℏ(εϖ) = εuℏ(ϖ),

where ε term introduces a rotation by a specific angle based on v, and the key concept is that applying
this rotation to an element ϖ and then applying the function ℏ has the same effect as applying h to ϖ
first and then rotating the result by a power of ε that depends on u. In our work we need the following
decomposition theorem

Lemma 1.1. [1] For every mapping ℏ : Ω → C and a v-fold symmetric set Ω, there exists a unique
sequence of (u, v)-symmetrical functions ℏu,v, such that

ℏ(ϖ) =
v−1∑
u=0

ℏu,v(ϖ), ℏu,v(ϖ) =
1
v

v−1∑
n=0

ε−nuℏ (εnϖ) , ϖ ∈ Ω. (1.2)
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Remark 1.2. In other words, (1.2) can also be formulated as

ℏu,v(ϖ) =
∞∑

m=1

δm,uamϖ
m, a1 = 1, (1.3)

where

δm,u =
1
v

v−1∑
n=0

ε(m−u)n =

1, m = lv + u;
0, m , lv + u;

, (1.4)

(l ∈ N, v = 1, 2, . . . , u = 0, 1, 2, . . . , v − 1).

The theory of (u, v)-symmetrical functions has many interesting applications; for instance,
convolutions, fixed points and absolute value estimates. Overall, (u, v)-symmetrical functions are a
specialized but powerful tool in geometric function theory. Their unique symmetry property allows
researchers to delve deeper into the geometric behavior of functions and uncover fascinating
connections. Denote be F̃ (u,v) for the family of all (u, v)-symmetric functions. Let us observe that the
classes F̃ (1,2), F̃ (0,2) and F̃ (1,v) are well-known families of odd, even and of v−symmetrical functions,
respectively.

The interplay between q-calculus and geometric function theory is a fascinating emerging area of
mathematical research The literature recognizes the fundamental characteristics of q-analogs, which
have various applications in the exploration of quantum groups, q-deformed super-algebras, fractals,
multi-fractal measures, and chaotic dynamical systems. Certain integral transforms within classical
analysis have their counterparts in the realm of q-calculus. Consequently, many researchers in q-
theory have endeavored to extend key results from classical analysis to their q-analogs counterparts.
To facilitate understanding, this paper presents essential definitions and concept explanations of q-
calculus that are utilized. Throughout the discussion, it is assumed that the parameter q adheres to the
condition 0 < q < 1. Let’s begin by reviewing the definitions of fractional q-calculus operators for
a complex-valued function ℏ. In [2], Jackson introduced and explored the concept of the q-derivative
operator ∂qℏ(ϖ) as follows:

∂qℏ(ϖ) =

 ℏ(ϖ)−ℏ(qϖ)
ϖ(1−q) , ϖ , 0,

ℏ′(0), ϖ = 0.
(1.5)

Equivalently (1.5), may be written as

∂qℏ(ϖ) = 1 +
∞∑

m=2

[m]qamϖ
m−1 ϖ , 0,

where
[m]q =

1 − qm

1 − q
= 1 + q + q2 + ... + qm−1. (1.6)

Note that as q→ 1−, [m]q → m. For a function ℏ(ϖ) = ϖm, we can note that

∂qℏ(ϖ) = ∂q(ϖm) =
1 − qm

1 − q
ϖm−1 = [m]qϖ

m−1.
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Then
lim

q→1−
∂qℏ(ϖ) = lim

q→1−
[m]qϖ

m−1 = mϖm−1 = ℏ′(ϖ),

where ℏ′(ϖ) represents the standard derivative.
The q-integral of a function ℏ was introduced by Jackson [3] and serves as a right inverse, defined

as follows: ∫ ϖ

0
ℏ(ϖ)dqϖ = ϖ(1 − q)

∞∑
m=0

qmℏ(ϖqm),

provided that the series
∑∞

m=0 qmℏ(ϖqm) converges. Ismail et al. [4] was the first to establish a
connection between quantum calculus and geometric function theory by introducing a q-analog of
starlike (and convex) functions. They generalized a well-known class of starlike functions, creating
the class of q-starlike functions, denoted by S∗q, which consists of functions ℏ ∈ F̃ that satisfy the
inequality: ∣∣∣∣∣∣∣∣

ϖ
(
∂qℏ(ϖ)

)
ℏ(ϖ)

−
1

1 − q

∣∣∣∣∣∣∣∣ ≤ 1
1 − q

, ϖ ∈ Ω.

Numerous subclasses of analytic functions have been investigated using the quantum calculus
approach in recent years by various authors, like how Naeem et al. [5], explored subclesses of
q-convex functions. Srivastava et al. [6] investigated subclasses of q-starlike functions. Govindaraj
and Sivasubramanian in [7], identified subclasses connected with q-conic domain. Alsarari et
al. [8, 9]. examined the convolution conditions of q-Janowski symmetrical functions classes and
studied (u, v)-symmetrical functions with q-calculus. Khan et al. [10] utilized the symmetric
q-derivative operator. Srivastava [11] published a comprehensive review paper that serves as a
valuable resource for researchers.

The (u, v)-symmetrical functions are crucial for the exploration of various subclasses of F̃ .
Recently, several authors have studied subclasses of analytic functions using the (u, v)-symmetrical
functions approach, (see [12–15]). By incorporating the concept of the q-derivative into the
framework of (u, v)-symmetrical functions, we will establish the following classes:

Definition 1.3. Let q and α be arbitrary fixed numbers such that 0 < q < 1 and 0 ≤ α < 1. We define
Sq(α, u, v) as the family of functions ℏ ∈ F̃ that satisfy the following condition:

ℜ

{
ϖ∂qℏ(ϖ)
ℏu,v(ϖ)

}
> α, for all ϖ ∈ Ω, (1.7)

where ℏu,v is defined in (1.2).

By selecting specific values for parameters, we can derive a variety of important subclasses that
have been previously investigated by different researchers in their respective papers. Here, we enlist
some of them:

• Sq(α, 1, 1) = Sq(α) which was introduced and examined by Agrawal and Sahoo in [16].
• Sq(0, 1, 1) = Sq which was initially introduced by Ismail et al. [4].
• S1(α, 1, 2) = S(α) the renowned class of starlike functions of order α established by Robertson

[17].
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• S1(0, 1, 1) = S∗ the class introduced by Nevanlinna [18].
• S1(0, 1, v) = S(0, k) the class introduced and studied by Sakaguchi [19].

We denote by Tq(α, u, v) the subclass of F̃ that includes all functions ℏ for which the following
holds:

ϖ∂qℏ(ϖ) ∈ Sq(α, u, v). (1.8)

We must revisit the neighborhood concept initially introduced by Goodman [20] and further
developed by Ruscheweyh [21].

Definition 1.4. For any ℏ ∈ F̃ , the ρ-neighborhood surrounding the function ℏ can be described as:

Nρ(ℏ) =

g ∈ F̃ : g(ϖ) = ϖ +
∞∑

m=2

bmϖ
m,

∞∑
m=2

m|am − bm| ≤ ρ

 . (1.9)

For e(ϖ) = ϖ, we can see that

Nρ(e) =

g ∈ F̃ : g(ϖ) = ϖ +
∞∑

m=2

bmϖ
m,

∞∑
m=2

m|bm| ≤ ρ

 . (1.10)

Ruschewegh [21] demonstrated, among other findings, that for all η ∈ C, with |µ| < ρ,

ℏ(ϖ) + ηϖ
1 + η

∈ S∗ ⇒ Nρ(ℏ) ⊂ S∗.

Our main results can be proven by utilizing the following lemma.

Lemma 1.5. [20] Let P(ϖ) = 1 +
∑∞

m=1 pmϖ
m, (ϖ ∈ Ω), with the conditionℜ{p(ϖ)} > 0, then

|pm| ≤ 2, (m ≥ 1).

In this paper, our main focus is on analyzing coefficient estimates and exploring the convolution
property within the context of the class Sq(α, u, v). Motivated by Definition 1.4, we introduce a new
definition of neighborhood that is specific to this class. By investigating the related neighborhood result
for Sq(α, u, v), we seek to offer a thorough understanding of the properties and characteristics of this
particular class.

2. Results

We will now examine the coefficient inequalities for the function ℏ in Sq(α, u, u) and Tq(α, u, v).

Theorem 2.1. If ℏ ∈ Sq(α, u, v), then

|am| ≤

m−1∏
n=1

(1 − 2α)δn,u + [n]q

[n + 1]q − δn+1,u
, (2.1)

where δn,u is given by (1.4).
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Proof. The function p(ϖ) is defined by

p(ϖ) =
1

1 − α

(
ϖ∂qℏ(ϖ)
ℏu,v(ϖ)

− α

)
= 1 +

∞∑
m=1

pmϖ
m,

where p(ϖ) represents a Carathéodory function and ℏ(ϖ) belongs to the class Sq(α, u, v).
Since

ϖ∂qℏ(ϖ) = (ℏu,v(ϖ))(α + (1 − α)p(ϖ)),

we have
∞∑

m=2

([m]q − δm,u)amϖ
m =

ϖ + ∞∑
m=2

amδm,uϖ
m

 1 + (1 − α)
∞∑

m=1

pmϖ
m

 ,
where δm,u is given by (1.4), δ1,u = 1.

By equating the coefficients of ϖm on both sides, we obtain

am =
(1 − α)

([m]q − δm,u)

m−1∑
i=1

δm−i,uam−i pi, a1 = 1.

By Lemma 1.5, we get

|am| ≤
2(1 − α)
|[m]q − δm,u|

.

m−1∑
i=1

δi,u|ai|, a1 = 1 = δ1,u. (2.2)

It now suffices to prove that

2(1 − α)
[m]q − δm,u

.

m−1∑
n=1

δm,u|au| ≤

m−1∏
n=1

(1 − 2α)δn,u + [n]q

[n + 1]q − δn+1,u
. (2.3)

To accomplish this, we utilize the method of induction.
We can easily see that (2.3) is true for m = 2 and 3.
Let the hypotheses is be true for m = i.
From (2.2), we have

|ai| ≤
2(1 − α)
[i]q − δi,u

i−1∑
n=1

δn,u|an|, a1 = 1 = δ1,u.

From (2.1), we have

|ai| ≤

i−1∏
n=1

δn,u(1 − 2α) + [n]q

[1 + n]q − δ1+n,u
.

By the induction hypothesis , we have

(1 − α)2
[i]q − δi,u

i−1∑
n=1

δn,u|an| ≤

i−1∏
n=1

(1 − 2α)δn,u + [n]q

[1 + n]q − δ1+n,u
.
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Multiplying both sides by
(1 − 2α)δi,u + [i]q

[1 + i]q − δ1+i,u
,

we have
i∏

n=1

(1 − 2α)δn,u + [n]q

[n + 1]q − δn+1,u
≥

(1 − 2α)δi,u + [i]q

[i + 1]q − δi+1,u

 2(1 − α)
[i]q − δi,u

i−1∑
n=1

δn,u|an|


=

2(1 − α)δi,u

[i]q − δi,u

i−1∑
n=1

δn,u|an| +

i−1∑
n=1

δn,u|an|

 . (1 − α)2
[1 + i]q − δ1+i,u

≥
2(1 − α)

[i + 1]q − δi+1,u

δi,u|ai| +

i−1∑
n=1

δn,u|an|


≥

2(1 − α)
[i + 1]q − δi+1,u

i∑
n=1

δn,u|an|.

Hence
(1 − α)2

[1 + i]q − δ1+i,u

i∑
n=1

δn,u|an| ≤

i∏
n=1

δn,u(1 − 2α) + [n]q

[1 + n]q − δ1+n,u
,

This demonstrates that the inequality (2.3) holds for m = i + 1, confirming the validity of the
result. □

For q→ 1−, u = 1 and v = 1, we obtain the following well-known result (see [22]).

Corollary 2.2. If ℏ ∈ S∗(α), then

|ak| ≤

k−1∏
s=1

(s − 2α)
(k − 1)!

.

Theorem 2.3. If ℏ ∈ Tq(α, u, v), then

|am| ≤
1

[m]q

m−1∏
n=1

(1 − 2α)δn,u + [n]q

[1 + n]q − δ1+n,u
, for m = 2, 3, 4, ..., (2.4)

where δm,u is given by (1.4).

Proof. By using Alexander’s theorem

ℏ(ϖ) ∈ Tq(α, u, v)⇔ ϖ∂qℏ(ϖ) ∈ Sq(α, u, v). (2.5)

The proof follows by using Theorem 2.1. □

Theorem 2.4. A function ℏ ∈ Sq(α, u, v) if and only if

1
ϖ

[
ℏ ∗ {k(ϖ)(1 − eiϕ) + f (ϖ)(1 + (1 − 2α)eiϕ)}

]
, 0, (2.6)

where 0 < q < 1, 0 ≤ α < 1, 0 ≤ ϕ < 2π and f , k are given by (2.10).
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Proof. Suppose that f ∈ Sq(α, u, v), then

1
1 − α

(
zϖ∂qℏ(ϖ)
ℏu,v(ϖ)

− α

)
= p(ϖ),

if and only if
ϖ∂qℏ(ϖ)
ℏu,v(ϖ)

,
1 + (1 − 2α)eiϕ

1 − eiϕ . (2.7)

For all ϖ ∈ Ω and 0 ≤ ϕ < 2π, it is straightforward to see that the condition (2.7) can be expressed
as

1
ϖ

[ϖ∂qℏ(ϖ)(1 − eiϕ) − ℏu,v(ϖ)(1 + (1 − 2α)eiϕ)] , 0. (2.8)

On the other hand, it is well-known that

ℏu,v(ϖ) = ℏ(ϖ) ∗ f (ϖ), ϖ∂qℏ(ϖ) = ℏ(ϖ) ∗ k(ϖ), (2.9)

where

f (ϖ) =
1
v

v−1∑
n=0

ε(1−u)n ϖ

1 − εnϖ
= ϖ +

∞∑
m=2

δm,uϖ
m, k(ϖ) = ϖ +

∞∑
m=2

[m]qϖ
m. (2.10)

Substituting (2.9) into (2.8) we get (2.6). □

Remark 2.5. From Theorem 2.4, it is straightforward to derive the equivalent condition for a function
ℏ to be a member of the class Sq(α, u, v) if and only if

(ℏ ∗ Tϕ)(ϖ)
ϖ

, 0, ϖ ∈ Ω, (2.11)

where Tϕ(ϖ) has the form

Tϕ(ϖ) = ϖ +
∞∑

m=2

tmϖ
m,

tm =
[m]q − δm,u − (δm,u(1 − 2α) + [m]q)eiϕ

(α − 1)eiϕ . (2.12)

In order to obtain neighborhood results similar to those found by Ruschewegh [21] for the classes,
we define the following concepts related to neighborhoods.

Definition 2.6. For any ℏ ∈ F̃ , the ρ-neighborhood associated with the function ℏ is defined as:

Nβ,ρ(ℏ) =

 g ∈ F̃ : g(ϖ) = ϖ +
∞∑

m=2

bmϖ
m,

∞∑
m=2

βm|am − bm| ≤ ρ

 , (ρ ≥ 0). (2.13)

For e(ϖ) = ϖ, we can see that

Nβ,ρ(e) =

 g ∈ F̃ : g(ϖ) = ϖ +
∞∑

m=2

bmϖ
m,

∞∑
m=2

βm|bm| ≤ ρ

 , (ρ ≥ 0), (2.14)

where [m]q is given by Eq (1.6).
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Remark 2.7. • For βm = m, from Definition 2.6, we get Definition 1.4.
• For βm = [m]q, from Definition 2.6, we get the definition of neighborhood with q-derivative
Nq,ρ(ℏ),Nq,ρ(e).
• For βm = |tm| given by (2.12), from Definition 2.6, we get the definition of neighborhood for the

class Sq(α, u, v) with Nq,ρ(α, u, v; ℏ).

Theorem 2.8. Let ℏ ∈ Nq,1(e), defined in the form (1.1), then∣∣∣∣∣∣ϖ∂qℏ(ϖ)
ℏu,v(ϖ)

− 1

∣∣∣∣∣∣ < 1, (2.15)

where 0 < q < 1, ϖ ∈ Ω.

Proof. Let ℏ ∈ F̃ , and ℏ(ϖ) = ϖ +
∑∞

m=2 amϖ
m, ℏu,v(ϖ) = ϖ +

∑∞
m=2 δm,uamϖ

m, where δm,u is given
by (1.4).

Consider

|ϖ∂qℏ(ϖ) − ℏu,v(ϖ)| =

∣∣∣∣∣∣∣
∞∑

m=2

([m]q − δm,u)amϖ
m−1

∣∣∣∣∣∣∣
< |ϖ|

∞∑
m=2

[m]q|am| −

∞∑
m=2

δm,u|am|.|ϖ|
m−1

= |ϖ| −

∞∑
m=2

δm,u|am|.|ϖ|
m−1

≤ |ℏu,v(ϖ)|, ϖ ∈ Ω.

This provides us with the desired result. □

Theorem 2.9. Let ℏ ∈ F̃ , and for any complex number η where |µ| < ρ, if

ℏ(ϖ) + ηϖ
1 + η

∈ Sq(α, u, v), (2.16)

then
Nq,ρ(α, u, v; ℏ) ⊂ Sq(α, u, v).

Proof. Assume that a function g is defined as g(ϖ) = ϖ +
∑∞

m=2 bmϖ
m and is a member of the class

Nq,ρ(α, u, v; ℏ). To prove the theorem, we need to demonstrate that g ∈ Sq(α, u, v). This will be shown
in the following three steps.

First, we observe that Theorem 2.4 and Remark 2.5 are equivalent to

ℏ ∈ Sq(α, u, v)⇔
1
ϖ

[(ℏ ∗ Tϕ)(ϖ)] , 0, ϖ ∈ Ω, (2.17)

where Tϕ(ϖ) = ϖ +
∑∞

m=2 tmϖ
m and tm is given by (2.12).

Second, we find that (2.16) is equivalent to∣∣∣∣∣∣ℏ(ϖ) ∗ Tϕ(ϖ)
ϖ

∣∣∣∣∣∣ ≥ ρ. (2.18)
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Since ℏ(ϖ) = ϖ +
∑∞

m=2 amϖ
m ∈ F̃ which satisfies (2.16), then (2.17) is equivalent to

Tϕ ∈ Sq(α, u, v)⇔
1
ϖ

[
ℏ(ϖ) ∗ Tϕ(ϖ)

1 + η

]
, 0, |η| < ρ.

Third, letting g(ϖ) = ϖ +
∑∞

m=2 bmϖ
m we notice that∣∣∣∣∣g(ϖ) ∗ Tϕ(ϖ)

ϖ

∣∣∣∣∣ =
∣∣∣∣∣∣ℏ(ϖ) ∗ Tϕ(ϖ)

ϖ
+

(g(ϖ) − ℏ(ϖ)) ∗ Tϕ(ϖ)
ϖ

∣∣∣∣∣∣
≥ ρ −

∣∣∣∣∣∣ (g(ϖ) − ℏ(ϖ)) ∗ Tϕ(ϖ)
ϖ

∣∣∣∣∣∣ (by using (2.18))

= ρ −

∣∣∣∣∣∣∣
∞∑

m=2

(bm − am)tmϖ
m

∣∣∣∣∣∣∣
≥ ρ − |ϖ|

∞∑
m=2

[m]q − δm,u − |[m]q + δm,u(1 − 2α)|
1 − α

|bm − am|

≥ ρ − |ϖ|ρ > 0.

This prove that
g(ϖ) ∗ Tϕ(ϖ)

ϖ
, 0, ϖ ∈ Ω.

Based on our observations in (2.17), it follows that g ∈ Sq(α, u, v). This concludes the proof of the
theorem. □

When u = v = 1, q → 1−, and α = 0 in the above theorem, we obtain (1.10), which was proven by
Ruscheweyh in [21].

Corollary 2.10. Let S∗ represent the class of starlike functions. Let ℏ ∈ F̃ , and for all complex
numbers η such that |µ| < ρ, if

ℏ(ϖ) + ηϖ
1 + η

∈ S∗, (2.19)

then Nσ(ℏ) ⊂ S∗.

3. Conclusions

In conclusion, this research paper successfully introduces and explores a novel category of
q-starlike and q-convex functions, specifically Sq(α, u, v) and Tq(α, u, v), that are fundamentally
linked to (u, v)-symmetrical functions. The findings highlight the intricate interplay between
q-starlikeness, q-convexity, and symmetry conditions, offering a rich framework for further
investigation. Through detailed analysis, including coefficient estimates and convolution conditions,
this work lays a solid foundation for future studies in this area. The established properties within the
(ρ, q)-neighborhood not only deepen our understanding of these function classes but also open
avenues for potential applications in complex analysis and geometric function theory. Overall, this
pioneering research marks a significant advancement in the study of special functions, inviting further
exploration and development in this dynamic field.
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