Research article Special Issues

A new ADI-IIM scheme for solving two-dimensional wave equation with discontinuous coefficients

  • Received: 30 August 2024 Revised: 21 October 2024 Accepted: 29 October 2024 Published: 01 November 2024
  • MSC : 65M06

  • A new alternating direction implicit immersed interface method (ADI-IIM) scheme was developed to solve the two-dimensional wave equation with discontinuous coefficients and sources. The alternating direction implicit (ADI) method was equipped with the immersed interface method (IIM) to recover the accuracy as well as maintaining the stability. Numerical experiments were carried out to verify the unconditional stability and the second-order accuracy both in time and space of the proposed scheme.

    Citation: Ruitao Liu, Wanshan Li. A new ADI-IIM scheme for solving two-dimensional wave equation with discontinuous coefficients[J]. AIMS Mathematics, 2024, 9(11): 31180-31197. doi: 10.3934/math.20241503

    Related Papers:

  • A new alternating direction implicit immersed interface method (ADI-IIM) scheme was developed to solve the two-dimensional wave equation with discontinuous coefficients and sources. The alternating direction implicit (ADI) method was equipped with the immersed interface method (IIM) to recover the accuracy as well as maintaining the stability. Numerical experiments were carried out to verify the unconditional stability and the second-order accuracy both in time and space of the proposed scheme.



    加载中


    [1] K. Beklemysheva, G. Grigoriev, N. Kulberg, I. Petrov, A. Vasyukov, Y. Vassilevski, Numerical simulation of aberrated medical ultrasound signals, Russ. J. Numer. Anal. M., 33 (2018), 277–288. http://dx.doi.org/10.1515/rnam-2018-0023 doi: 10.1515/rnam-2018-0023
    [2] R. Alford, K. Kelly, D. Boore, Accuracy of finite-difference modeling of acoustic wave equations, Geophysics, 39 (1974), 834–841.
    [3] A. Taflove, Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures, Wave Motion, 10 (1988), 547–582. http://dx.doi.org/10.1016/0165-2125(88)90012-1 doi: 10.1016/0165-2125(88)90012-1
    [4] D. Deng, C. Zhang, A new fourth-order numerical algorithm for a class of nonlinear wave equations, Appl. Numer. Math., 62 (2012), 1864–1879. http://dx.doi.org/10.1016/j.apnum.2012.07.004 doi: 10.1016/j.apnum.2012.07.004
    [5] W. Wang, H. Zhang, Z. Zhou, X. Yang, A fast compact finite difference scheme for the fourth-order diffusion-wave equation, Int. J. Comput. Math., 101 (2024), 170–193. http://dx.doi.org/10.1080/00207160.2024.2323985 doi: 10.1080/00207160.2024.2323985
    [6] D. Shi, L. Pei, Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations, Appl. Math. Comput., 219 (2013), 9447–9460. http://dx.doi.org/10.1016/j.amc.2013.03.008 doi: 10.1016/j.amc.2013.03.008
    [7] C. Liu, X. Wu, Arbitrarily high-order time-stepping schemes based on the operator spectrum theory for high-dimensional nonlinear Klein-Gordon equations, J. Comput. Phys., 340 (2017), 243–275. http://dx.doi.org/10.1016/j.jcp.2017.03.038 doi: 10.1016/j.jcp.2017.03.038
    [8] Y. Cui, D. Mao, Numerical method satisfying the first two conservation laws for the Korteweg-de Vries equation, J. Comput. Phys., 227 (2007), 376–399. http://dx.doi.org/10.1016/j.jcp.2007.07.031 doi: 10.1016/j.jcp.2007.07.031
    [9] D. Deng, Q. Wu, The error estimations of a two-level linearized compact ADI method for solving the nonlinear coupled wave equations, Numer. Algorithms, 89 (2022), 1663–1693. http://dx.doi.org/10.1007/s11075-021-01168-9 doi: 10.1007/s11075-021-01168-9
    [10] X. Yang, W. Qiu, H. Zhang, L. Tang, An efficient alternating direction implicit finite difference scheme for the three-dimensional time-fractional telegraph equation, Comput. Math. Appl., 102 (2021), 233–247. http://dx.doi.org/10.1016/j.camwa.2021-10.021 doi: 10.1016/j.camwa.2021-10.021
    [11] W. Zhang, J. Jiang, A new family of fourth-order locally one-dimensional schemes for the three-dimensional wave equation, J. Comput. Appl. Math., 311 (2017), 130–147. http://dx.doi.org/10.1016/j.cam.2016.07.020 doi: 10.1016/j.cam.2016.07.020
    [12] C. Peskin, Lectures on mathematical aspects of physiology. Mathematical aspects of physiology Proceedings of the Twelfth Summer Seminar on Applied Mathematics held at the University of Utah, Salt Lake City, 1980.
    [13] J. Gabbard, T. Gillis, P. Chatelain, W. Van Rees, An immersed interface method for the 2D vorticity-velocity Navier-Stokes equations with multiple bodies, J. Comput. Phys., 464 (2022), No. 111339. http://dx.doi.org/10.1016/j.jcp.2022.111339 doi: 10.1016/j.jcp.2022.111339
    [14] H. Yi, Y. Chen, Y. Wang, Y. Huang, A two-grid immersed finite element method with the Crank-Nicolson time scheme for semilinear parabolic interface problems, Appl. Numer. Math., 189 (2023), 1–22. http://dx.doi.org/10.1016/j.apnum.2023.03.010 doi: 10.1016/j.apnum.2023.03.010
    [15] Y. Wang, Y. Chen, Y. Huang, H. Yi, A family of two-grid partially penalized immersed finite element methods for semi-linear parabolic interface problems, J. Sci. Comput., 88 (2021), 80. http://dx.doi.org/10.1007/s10915-021-01575-z doi: 10.1007/s10915-021-01575-z
    [16] W. Hu, M. Lai, Y. Young, A hybrid immersed boundary and immersed interface method for electrohydrodynamic simulations, J. Comput. Phys., 282 (2015), 47–61. http://dx.doi.org/10.1016/j.jcp.2014.11.005 doi: 10.1016/j.jcp.2014.11.005
    [17] J. Xu, W. Shi, W. Hu, J. Huang, A level-set immersed interface method for simulating electrohydrodynamics, J. Comput. Phys., 400 (2020), 108956. http://dx.doi.org/10.1016/j.jcp.2019.108956 doi: 10.1016/j.jcp.2019.108956
    [18] D. Nguyen, S. Zhao, Time-domain matched interface and boundary (MIB) modeling of Debye dispersive media with curved interfaces, J. Comput. Phys., 278 (2014), 298–325. http://dx.doi.org/10.1016/j.jcp.2014.08.038 doi: 10.1016/j.jcp.2014.08.038
    [19] C. Li, Z. Wei, G. Long, C. Campbell, S. Ashlyn, S. Zhao, Alternating direction ghost-fluid methods for solving the heat equation with interfaces, Comput. Math. Appl., 80 (2020), 714–732. http://dx.doi.org/10.1016/j.camwa.2020.04.027 doi: 10.1016/j.camwa.2020.04.027
    [20] B. Rivière, S. Shaw, M. Wheeler, J. Whiteman, Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity, Numer. Math., 95 (2003), 347–376. http://dx.doi.org/10.1007/s002110200394 doi: 10.1007/s002110200394
    [21] R. Leveque, Z. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), 1019–1044. http://dx.doi.org/10.1137/0731054 doi: 10.1137/0731054
    [22] C. Zhang, R. Leveque, The immersed interface method for acoustic wave equations with discontinuous coefficients, Wave Motion, 25 (1997), 237–263. http://dx.doi.org/10.1016/S0165-2125(97)00046-2 doi: 10.1016/S0165-2125(97)00046-2
    [23] S. Deng, Z. Li, K. Pan, An ADI-Yee's scheme for Maxwell's equations with discontinuous coefficients, J. Comput. Phys., 438 (2021), No. 110356. http://dx.doi.org/10.1016/j.jcp.2021.110356 doi: 10.1016/j.jcp.2021.110356
    [24] S. Zhao, A matched alternating direction implicit (ADI) method for solving the heat equation with interfaces, J. Sci. Comput., 63 (2015), 118–137. http://dx.doi.org/10.1007/s10915-014-9887-0 doi: 10.1007/s10915-014-9887-0
    [25] Y. Zhang, D. Nguyen, K. Du, J. Xu, S. Zhao, Time-domain numerical solutions of Maxwell interface problems with discontinuous electromagnetic waves, Adv. Appl. Math. Mech., 8 (2016), 353–385. http://dx.doi.org/10.4208/aamm.2014.m811 doi: 10.4208/aamm.2014.m811
    [26] J. Liu, Z. Zheng, A dimension by dimension splitting immersed interface method for heat conduction equation with interfaces, J. Comput. Appl. Math., 261 (2014), 221–231. http://dx.doi.org/10.1016/j.cam.2013.10.051 doi: 10.1016/j.cam.2013.10.051
    [27] J. Liu, Z. Zheng, Efficient high-order immersed interface methods for heat equations with interfaces, Appl. Math. Mech., 35 (2014), 1189–1202. http://dx.doi.org/10.1007/s10483-014-1851-6 doi: 10.1007/s10483-014-1851-6
    [28] N. Gong, W. Li, High-order ADI-FDTD schemes for Maxwell's equations with material interfaces in two dimensions, J. Sci. Comput., 93 (2022), 51. http://dx.doi.org/10.1007/s10915-022-02011-6 doi: 10.1007/s10915-022-02011-6
    [29] T. Zhang, C. Yu, M. Du, W. Xu, Stability analysis of alternate implicit schemes for 2-D second-order hyperbolic equations, Second International Conference on Statistics, Applied Mathematics, and Computing Science (CSAMCS 2022), SPIE, 12597 (2023), 215–221. http://dx.doi.org/10.1117/12.2672453 doi: 10.1117/12.2672453
    [30] Z. Li, M. Lai, The immersed interface method for the Navier-Stokes equations with singular forces, J. Comput. Phys., 171 (2001), 822–842. http://dx.doi.org/10.1006/jcph.2001.6813 doi: 10.1006/jcph.2001.6813
    [31] S. Osher, R. Fedkiw, Level set methods and dynamic implicit surfaces, Appl. Math. Sci., Springer, 153 (2003).
    [32] J. Xu, H. Zhao, An Eulerian formulation for solving partial differential equations along a moving interface, J. Sci. Comput., 19 (2003), 573–594. http://dx.doi.org/10.1023/A:1025336916176 doi: 10.1023/A:1025336916176
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(124) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog