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1. Introduction

Wave equations are widely used in various engineering and scientific fields, such as the B-ultrasound
technology in medicine [1], the oil exploration [2], and the aerospace and biological systems [3].
Meanwhile, material interfaces with discontinuous coefficients on both sides and singular sources are
usually encountered in these fields.

There are many numerical methods for solving wave equations without interface, such as finite dif-
ference methods [4,5], finite element methods [6], spectral methods [7], and finite volume methods [8].
Specially, as two efficient finite difference schemes for high dimensional problems, the alternating di-
rection implicit (ADI) method and the locally one dimension (LOD) method are both of high accuracy,
unconditional stability, and low expense [9–11].

However, when it comes to the case with material interfaces, implementing these numerical schemes
to wave equations results in the descent of the accuracy. In order to recover the accuracy, many inter-
face treatments have been proposed, such as immersed boundary method [12, 16], immersed interface
method (IIM) [13–17], matched interface and boundary (MIB) method [18], ghost-fluid method [19],
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and discontinuous Galerkin method [20]. The IIM is proposed in [21] aiming at solving the elliptic
equation with discontinuous coefficients or singular source terms. Based on the jump condition, a
correction term is added to the original scheme to retain the spatial accuracy of the scheme. Then,
the IIM is extended to parabolic equations and hyperbolic equations with interfaces. The two-grid
partially penalized immersed finite element algorithms for solving the semi-linear parabolic interface
problems are developed in [14, 15]. Recently, a simple version of the level-set based IIM is developed
in [16, 17] to solve the electric potential and its gradient, which avoids the local coordinate transform
in the original IIM. For acoustic wave equation in the form of first-order hyperbolic equations in het-
erogeneous media, a second-order Lax-Wendroff scheme using IIM is developed [22]. For Maxwell’s
equations with discontinuous material coefficients, an ADI-Yee’s scheme through introducing aug-
mented intermediate quantities is proposed, which has advantages such as maintaining the structure as
well as the accuracy and stability of Yee’s scheme even with the presence of discontinuities [23]. The
MIB method recovers the accuracy of the original scheme around the interface by introducing fictitious
points to modify the numerical schemes. Values of the fictitious points are determined by approximat-
ing the zeroth and first order jump conditions [24]. The advantage of MIB lies in that it avoids the
calculation of high order jump conditions. The MIB method is embedded into the finite difference time
domain (FDTD) algorithm to propose a new MIBTD scheme to solve the Maxwell’s equations with
discontinuous coefficients [25].

Furthermore, to improve the stability of the numerical methods for interface problems, many un-
conditionally stable schemes have been developed. A new algorithm is constructed by combining IIM
and LOD methods for the heat conduction equation with interfaces and the unconditional stability is
verified numerically [26]. Further, a high-order compact ADI difference scheme with correction terms
added by IIM is developed for heat equations with interfaces [27]. The framework of the high-order
ADI-FDTD method equipped with the MIB technique is developed to solve Maxwell’s equations with
straight line interfaces [28]. However, there is little work on the unconditionally stable schemes for 2D
wave equation with curve interface.

In this paper, combining IIM and ADI methods, we propose a new scheme for the 2D wave equation
with curved interfaces. The influence of the wave speeds in both sides of the interface is considered
in the construction of the scheme. For both small jump ratios and large jump ratios, the developed
scheme is unconditionally stable and of second order accuracy both in time and space numerically.
The rest of this paper is organized as follows. In Section 2, we describe the problems and develop the
algorithm. In Section 3, numerical experiments are implemented to verify the unconditional stability
and convergence of the proposed scheme. Conclusions are given in Section 4.

2. The description of algorithms

We focus on the initial-boundary value problem of the 2D wave equation with discontinuous coef-
ficients

utt = α
(
uxx + uyy

)
+ f (x, y, t) , (x, y) ∈ Ω, 0 < t ≤ T, (2.1)

u (x, y, 0) = Φ (x, y) , ut (x, y, 0) = ζ (x, y) , (x, y) ∈ Ω, (2.2)
u (x, y, t) = Ψ (x, y, t) , (x, y, t) ∈ ∂Ω × (0,T ] , (2.3)
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where Ω is a rectangle domain [a, b] × [c, d] and ∂Ω is the boundary of Ω. The interface Γ divides Ω
into two pieces, denoted by Ω+ and Ω−. α is a piecewise constant with values α+ on Ω+, and α− on Ω−,
respectively. Suppose that the following jump conditions are imposed:

[u] = lim
x→Γ
x∈Ω+

u (x, y, t) − lim
x→Γ
x∈Ω−

u (x, y, t) = ω (x, y, t) , (2.4)

[un] = lim
x→Γ
x∈Ω+

un (x, y, t) − lim
x→Γ
x∈Ω−

un (x, y, t) = v (x, y, t) , (2.5)

where n is the outer normal vector; see Figure 1.

Figure 1. Geometry of the problem.

2.1. Mesh generation

A uniform partition is used with

xi = a + ihx, y j = c + jhy, tn = nτ, i = 0, 1, · · · ,M, j = 0, 1, · · · ,N, n = 0, 1, · · · ,K.

where hx = (b − a) /M, hy = (d − c) /N, and τ = T/K.
Let un

i, j = u
(
xi, y j, tn

)
. Define the second-order central difference operators δ2

x and δ2
y

δ2
xu

n
i, j =

un
i−1, j − 2un

i, j + un
i+1, j

h2
x

, δ2
yun

i, j =
un

i, j−1 − 2un
i, j + un

i, j+1

h2
y

.

2.2. Construction of the ADI-IIM(2,2) scheme

Following is the construction of the ADI-IIM scheme with second order accuracy both in time and
space. For simplicity, we record it as the ADI-IIM(2,2) scheme.

Let Un
i, j be the numerical solution of Eqs (2.1)–(2.5). To start, we give the weighted Crank-Nicolson

scheme for Eq (2.1) from tn to tn+1 without interface [29]

1
τ2

(
Un+1

i, j − 2Un
i, j + Un−1

i, j

)
= αδ2

x

(
θUn+1

i, j + (1 − 2θ) Un
i, j + θU

n−1
i, j

)
+ αδ2

y

(
θUn+1

i, j + (1 − 2θ) Un
i, j + θU

n−1
i, j

)
+ f n

i, j, (2.6)

where 0 ≤ θ ≤ 1 is the weight.

AIMS Mathematics Volume 9, Issue 11, 31180–31197.



31183

By introducing the intermediate variable U∗i, j, the ADI(2,2) scheme for Eq (2.1) is obtained from Eq
(2.6)

Step 1 :
1
τ2 (U∗i, j − 2Un

i, j + Un−1
i, j ) = αδ2

x

(
θU∗i, j + (1 − 2θ) Un

i, j + θU
n−1
i, j

)
+ αδ2

y

(
(1 − 2θ) Un

i, j + 2θUn−1
i, j

)
+ f n

i, j, (2.7)

Step 2 :
1
τ2

(
Un+1

i, j − U∗i, j
)
= αθδ2

y

(
Un+1

i, j − Un−1
i, j

)
. (2.8)

Since Eqs (2.7)–(2.8) is a three-level scheme, the values
{
U1

i, j

∣∣∣ (xi, y j

)
∈ Ω

}
need to compute first. For

(xi, y j) ∈ Ω/∂Ω, we use the Taylor series expansion to yield

u1
i, j = u0

i, j + τut

(
xi, y j, 0

)
+
τ2

2
utt

(
xi, y j, 0

)
+ O

(
τ3

)
, (2.9)

where the term utt

(
xi, y j, 0

)
is replaced by the derivatives in space through the equation (2.1). Then,

we develop the numerical scheme for the first time level that

U1
i, j = ϕ

(
xi, y j

)
+ τζ

(
xi, y j

)
+
ατ2

2

(
ϕxx + ϕyy

) (
xi, y j

)
+
τ2

2
f
(
xi, y j, 0

)
. (2.10)

The scheme (2.7)–(2.8) is unconditional stable when θ ∈ [0.25, 1] [29]. In order to solve the problem
with interface (2.1)–(2.5), the ADI scheme needs to be modified.

We say
(
xi, y j

)
is a regular point if all the five grid points in Eqs (2.7)–(2.8) are on the same

side of the interface. At the regular grid point, the local truncation error of the numerical scheme
is O

(
h2

x + h2
y + τ

2
)
.

At the irregular points, suppose that a correction term Fn
i, j is added into the right hand side (RHS)

of Step 1.

1
τ2

(
U∗i, j − 2Un

i, j + Un−1
i, j

)
=αδ2

x

(
θU∗i, j + (1 − 2θ) Un

i, j + θU
n−1
i, j

)
+ αδ2

y

(
(1 − 2θ) Un

i, j + 2θUn−1
i, j

)
+ f n

i, j − Fn
i, j, (2.11)

where Fn
i, j is determined by maintaining the second order accuracy of the scheme. Eqs (2.11) and (2.8)

are the proposed ADI-IIM(2,2) scheme of the 2D wave equation with interface (2.1)–(2.5).
The key point lies in the calculation of correction term Fn

i, j. In the following parts, we provide two
algorithms, Algorithm I and Algorithm II, to compute the correction term Fn

i, j by applying the methods
developed in [16, 26], respectively.

2.3. Calculation of correction term: Algorithm I

In this part, we apply the IIM developed in [26] to the ADI-IIM(2,2) scheme and present Algorithm
I for the calculation of correct term Fn

i, j.
The following lemma is used in the derivation of correction term Fn

i, j.
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Lemma 2.1. [30] Let u (x) be a piecewise twice differentiable function. Assume that u (x) and its
derivatives have finite jumps [u], [ux], and [uxx], at x∗ = x + αh, −1 ≤ α ≤ 1, then the following
relations hold,

u (x + h) − 2u (x) + u (x − h)
h2 = uxx (x) +

Cx2

h2 + O (h) , (2.12)

where

Cx2 = [u] + [ux] (1 − |α|) h + [uxx]
(1 − |α|)2 h2

2
. (2.13)

Suppose that
(
x∗, y j

)
is between

(
xi, y j

)
and

(
xi+1, y j

)
, and

(
xi−1, y j

)
,
(
xi, y j

)
∈ Ω−,

(
xi+1, y j

)
∈ Ω+.

We have from Lemma 2.1 that

δ2
xui, j =

ui+1, j − 2ui, j + ui−1, j

h2
x

= (uxx)i, j +
(Cx2)i, j

h2
x
+ O (hx) ,

δ2
xui+1, j =

ui+2, j − 2ui+1, j + ui, j

h2
x

= (uxx)i+1, j +
(Cx2)i+1, j

h2
x
+ O (hx) ,

where

(Cx2)i, j = [u] + (xi+1 − x∗) [ux] +
(xi+1 − x∗)2

2
[uxx] ,

(Cx2)i+1, j = − [u] − (xi − x∗) [ux] −
(xi − x∗)2

2
[uxx] .

Similarly, if
(
xi−1, y j

)
,
(
xi, y j

)
∈ Ω+,

(
xi+1, y j

)
∈ Ω−, it implies that

(Cx2)i, j = − [u] − (xi+1 − x∗) [ux] −
(xi+1 − x∗)2

2
[uxx] ,

(Cx2)i+1, j = [u] + (xi − x∗) [ux] +
(xi − x∗)2

2
[uxx] .

The correction term for the central difference operator in the y direction can be obtained in the same way
and we denote it as (Cy2)i, j. Suppose that (xi, y∗) is between

(
xi, y j

)
and

(
xi, y j+1

)
, and

(
xi, y j−1

)
,
(
xi, y j

)
∈

Ω−,
(
xi, y j+1

)
∈ Ω+. We have from Lemma 2.1 that

δ2
yui, j =

ui, j+1 − 2ui, j + ui, j−1

h2
y

=
(
uyy

)
i, j
+

(
Cy2

)
i, j

h2
y
+ O

(
hy

)
,

δ2
yui, j+1 =

ui, j+2 − 2ui, j+1 + ui, j

h2
y

=
(
uyy

)
i, j+1
+

(
Cy2

)
i, j+1

h2
y

+ O
(
hy

)
,

where

(
Cy2

)
i, j
= [u] +

(
y j+1 − y∗

) [
uy

]
+

(
y j+1 − x∗

)2

2

[
uyy

]
,
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(
Cy2

)
i, j+1
= − [u] −

(
y j − y∗

) [
uy

]
−

(
y j − y∗

)2

2

[
uyy

]
.

If
(
yi, y j−1

)
,
(
xi, y j

)
∈ Ω+,

(
xi, y j+1

)
∈ Ω−, it implies that

(
Cy2

)
i, j
= − [u] −

(
y j+1 − y∗

) [
uy

]
−

(
y j+1 − y∗

)2

2

[
uyy

]
,

(
Cy2

)
i, j+1
= [u] +

(
y j − y∗

) [
uy

]
+

(
y j − y∗

)2

2

[
uyy

]
.

To recover the second-order accuracy of the ADI(2,2) scheme for problems with interface, the local
truncation errors need to achieve O (h) at irregular points.

Suppose that (xi, y j) is an irregular point. For simplicity, we omit the subscript of space directions
in the following contents, assuming that the calculations are all at

(
xi, y j

)
. The equivalent scheme of

the proposed ADI-IIM(2,2) scheme, i.e., Eq (2.11) and Eq (2.8), is written as

Un+1 − 2Un + Un−1

τ2 = Mn
1 + Mn

2 + Mn
3 + f n − Fn, (2.14)

where

Mn
1 = αδ

2
x

(
θUn+1 + (1 − 2θ) Un + θUn−1

)
,

Mn
2 = αδ

2
y

(
θUn+1 + (1 − 2θ) Un + θUn−1

)
,

Mn
3 = −ατ

2θ2δ2
x

[
αδ2

y

(
Un+1 − Un−1

)]
.

Replacing the numerical solution U in Eq (2.14) with the exact solution u, we have from the left
hand side (LHS) of Eq (2.14) that

un+1 − 2un + un−1

τ2 = un
tt + O

(
τ2

)
.

For Mn
1 on the RHS of Eq (2.14), by Lemma 2.1, it is derived that

M̃n
1 =αθδ

2
xu

n+1 + α (1 − 2θ) δ2
xu

n + αθδ2
xu

n−1

=αδ2
x

(
θun+1 + (1 − 2θ) un + θun−1

)
=αδ2

x

(
un + θτ2un

tt + O
(
τ4

))
=αun

xx +
αCn

x2

h2
x
+ αθτ2un

ttxx +
αθτ2Cn

t2x

h2
x
+ O

(
τ4

h2
x
+ hx

)
, (2.15)

where

Cn
t2x =


[utt] ,

(
xi, y j

)
∈ Ω−,

(
xi+1, y j

)
∈ Ω+,

− [utt] ,
(
xi, y j

)
∈ Ω+,

(
xi+1.y j

)
∈ Ω−,

− [utt] ,
(
xi−1, y j

)
∈ Ω−,

(
xi.y j

)
∈ Ω+,

[utt] ,
(
xi−1, y j

)
∈ Ω+,

(
xi, y j

)
∈ Ω−.

(2.16)
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Similarly, for Mn
2 , it implies that

M̃n
2 = αun

yy +
αCn

y2

h2
y
+ αθτ2un

ttyy +
αθτ2Cn

t2y

h2
y
+ O

(
τ4

h2
y
+ hy

)
, (2.17)

where

Cn
t2y =


[utt] ,

(
xi, y j

)
∈ Ω−,

(
xi, y j+1

)
∈ Ω+,

− [utt] ,
(
xi, y j

)
∈ Ω+,

(
xi.y j+1

)
∈ Ω−,

− [utt] ,
(
xi, y j−1

)
∈ Ω−,

(
xi.y j

)
∈ Ω+,

[utt] ,
(
xi, y j−1

)
∈ Ω+,

(
xi, y j

)
∈ Ω−.

(2.18)

With respect to Mn
3 , we have that

M̃n
3 = − ατ

2θ2δ2
x

[
αδ2

y

(
un+1 − un−1

)]
= − ατ2θ2δ2

x

[
αδ2

y

(
2τun

t + O
(
τ3

))]
= − 2ατ3θ2δ2

x

(
αδ2

yun
t

)
+ O

(
τ5

h2
xh2

y

)
= − 2ατ3θ2δ2

x

(
αCn

ty

h2
y
+ O (1)

)
+ O

(
τ5

h2
xh2

y

)
= −

2ατ3θ2

h2
y
δ2

x

(
αCn

ty

)
+ O

(
τ5

h2
xh2

y
+
τ3

h2
x

)
, (2.19)

where

Cn
ty =


[ut] +

(
y j+1 − y∗

) [
uty

]
,

(
xi, y j

)
∈ Ω−,

(
xi, y j+1

)
∈ Ω+,

− [ut] −
(
y j+1 − y∗

) [
uty

]
,

(
xi, y j

)
∈ Ω+,

(
xi.y j+1

)
∈ Ω−,

− [ut] −
(
y j−1 − y∗

) [
uty

]
,

(
xi, y j−1

)
∈ Ω−,

(
xi, y j

)
∈ Ω+,

[ut] +
(
y j−1 − y∗

) [
uty

]
,

(
xi, y j−1

)
∈ Ω+,

(
xi.y j

)
∈ Ω−,

(2.20)

satisfying δ2
yun

t = Cn
ty + O (1).

The correction term Fn in Eq (2.14) is given by combining Eqs (2.15)–(2.19),

Fn =
αCn

x2

h2
x
+
αθτ2Cn

t2x

h2
x
+
αCn

y2

h2
y
+
αθτ2Cn

t2y

h2
y
−

2ατ3θ2

h2
y
δ2

x

(
αCn

ty

)
. (2.21)

Calculation of the correction term Fn is based on the jump values of u and its partial derivatives. As
these jump conditions are usually defined in the normal direction of the interface, we need to define
the local coordinate system at the point (x∗, y∗) on the interface [21]. Define

ξ = (x − x∗) cos θ + (y − y∗) sin θ,
η = (x − x∗) sin θ + (y − y∗) cos θ,
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where, the ξ-axis is along the normal direction of the interface, the η-axis is along the tangential
direction, and θ is the angle between the x-axis and ξ-axis; see Figure 2.

Figure 2. Local coordinate system.

In a neighborhood of the point (x∗, y∗), the interface Γ can be parameterized as

ξ = χ (η) , with χ (0) = 0, χ′ (0) = 0. (2.22)

The curvature of the interface at (x∗, y∗) is χ′′ (0).
According to jump conditions (2.4)–(2.5), we have the jump conditions in the local coordinate

system

[u] = ω (x, y, t) = ω̃ (η, t) ,
[
uξ

]
= [un] = v (x, y, t) = ṽ (η, t) . (2.23)

Taking the derivative of [u] with respect to η results in[
uη

]
=

[
uξ

]
χ′ +

[
uη

]
= ω̃η (η, t) . (2.24)

Similarly, taking derivatives of [uξ] and [uη] with respect to η, it follows by Eq (2.22) that[
uηη

]
= −χ′′

[
uξ

]
+ ω̃ηη,

[
uξη

]
= χ′′

[
uη

]
+ ṽη, (2.25)

To compute [uξξ], the governing equation (2.1) is written with the same form due to isotropy in local
coordinates as

utt = α
(
uξξ + uηη

)
+ f ,

which replies that [
uξξ

]
=

[utt

α

]
−

[
uηη

]
−

[
f
α

]
. (2.26)

With Eq (2.25), the terms in RHS of Eq (2.26) are easy to compute except
[

utt
α

]
. Now, we focus on the

calculation of
[

utt
α

]
.

Considering the influence of the wave speed, i.e., the coefficient α in Eq (2.1), different treatments
are taken according to the difference of α+ and α−.
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Assume that α+ > α−, and the term in Ω− is used to represent
[

utt
α

]
, i.e.,[utt

α

]
=

u+tt
α+
−

u−tt
α−
=

u+tt
α+
−

u−tt
α+
+

u−tt
α+
−

u−tt
α−
=

[utt]
α+
+ u−tt

(
1
α+
−

1
α−

)
=

[utt]
α+
+ u−tt

[
1
α

]
, (2.27)

where u−tt is obtained by the governing equation and spatial extrapolation. In fact, we have from Eq.(2.1)
that

u−tt = α
−
(
u−xx + u−yy

)
+ f −. (2.28)

The terms u−xx and u−yy in RHS of Eq (2.28) are approximated by second-order extrapolation with the
nearest grid points around (x∗, y∗) in the domain Ω−.

When it comes to the case that α+ < α−, we calculate
[

utt
α

]
from the other direction, i.e.,[utt

α

]
= u+tt

(
1
α+
−

1
α−

)
+

[utt]
α−
=

(
α+u+xx + α

+u+yy + f +
) [1
α

]
+

[utt]
α−
. (2.29)

Finally, through inverse transformation, the jump conditions in the Cartesian coordinates are given:

[ux] =
[
uξ

]
cos θ −

[
uη

]
sin θ, [uxx] =

[
uξξ

]
cos2 θ − 2

[
uξη

]
cos θ sin θ +

[
uηη

]
sin2 θ,[

uy

]
=

[
uξ

]
sin θ +

[
uη

]
cos θ,

[
uyy

]
=

[
uξξ

]
sin2 θ + 2

[
uξη

]
cos θ sin θ +

[
uηη

]
cos2 θ.

2.4. Calculation of correction term: Algorithm II

A simple version of IIM for the elliptic equation in an irregular domain is developed in [16]. Com-
pared with the IIM in Section 2.3, for irregular points, the construction and computation of the correc-
tion term in the difference scheme by the simple version of IIM relies on the Taylor expansion at the
projection point and the surface Laplacian operator, which is implemented without the use of the local
coordinate transform. Here, we apply the simple version of IIM to the calculation of the correction
term in the ADI-IIM(2,2) scheme Eq (2.11) and Eq (2.8).

In fact, the equivalent scheme of the ADI-IIM(2,2) scheme is obtained by eliminating U⋆i, j from Eq
(2.11) and Eq (2.8),

1
τ2

(
Un+1

i, j − 2Un
i, j + Un−1

i, j

)
= αδ2

x

(
θUn+1

i, j + (1 − 2θ) Un
i, j + θU

n−1
i, j

)
+αδ2

y

(
θUn+1

i, j + (1 − 2θ) Un
i, j + θU

n−1
i, j

)
−αθτ2δ2

x

(
αδ2

y(Un+1
i, j − Un−1

i, j )
)
+ f n

i, j − Fn
i, j, (2.30)

where Fn
i, j is the correction term for the irregular point. It can be seen from Eq (2.30) that a grid point

is regular if the standard nine-point Laplacian at that grid point does not cut through the interface,
otherwise it is irregular.

To implement the simple version of IIM, the immersed interface Γ in Figure 1 is represented by
Γ = {X(s) = (X(s),Y(s)), 0 ≤ s < 2π}, where s is a Lagrangian parameter and X(0) = X(2π). Also,
the level-set function ϕ(x, y) of the interface Γ is adopted ( [31]).

Take the case illustrated in Figure 3 as an example. Here, the grid point (xi, y j) is irregular and the
correction term Fn

i, j comes from the three points (xi−1, y j−1), (xi−1, y j), and (xi−1, y j+1) since they fall
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into the different side of the interface compared with (xi, y j). To derive the correction term as in [16],
the orthogonal projections of (xi−1, y j−1), (xi−1, y j), and (xi−1, y j+1) on the interface, i.e., X⋆k1

, X⋆k , and
X⋆k2

, are determined first as shown in Figure 3. Then, the truncated Taylor’s series expansion along the
normal direction at the orthogonal projections are given to result in the corresponding correction term

Fn
i, j =
α−Cn

i−1, j

h2
x
−

2α−α+θτ3

h2
xh2

y

(
C

n
i−1, j−1 − 2C

n
i−1, j +C

n
i−1, j+1

)
, (2.31)

where

Cn
i−1, j = S̃ (ϕ(xi−1, y j))

[u(tn)] + di−1, j[un(tn)] +
d2

i−1, j

2

([
utt(tn)
α

]
−

[
f (tn)
α

]
− κ[un(tn)]

−
1
|Xs|

∂

∂s

(
1
|Xs|

∂[u(tn)]
∂s

))
+ θτ2[utt(tn)]

)
X⋆k

, (2.32)

C
n
i−1, j = S̃ (ϕ(xi−1, y j))

(
[ut(tn)] + di−1, j[unt(tn)]

)
X⋆k
, (2.33)

C
n
i−1, j−1 = S̃ (ϕ(xi−1, y j−1))

(
[ut(tn)] + di−1, j−1[unt(tn)]

)
X⋆k1

, (2.34)

C
n
i−1, j+1 = S̃ (ϕ(xi−1, y j+1))

(
[ut(tn)] + di−1, j+1[unt(tn)]

)
X⋆k2

, (2.35)

with |Xs| =
√

X′2(s) + Y ′2(s), κ the local curvature of the interface, d the distance from the grid point
to its projection on the interface, and S̃ the modified sign function defined as

S̃ (x) =
{

1, i f x > 0,
−1, i f x ≤ 0.

(2.36)

The surface Laplacian operator ( [32]) and Eq (2.1) are used in the derivation of Eq (2.32).

The terms in Eqs (2.32)–(2.35) can be computed accurately by the jump conditions in the interface
(2.4)-(2.5) except the term

[
utt(tn)
α

]
, which is dealt with the method given in Section 2.3, Eqs (2.27)–

(2.29).
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Figure 3. The grid points involved in the equivalent scheme of the ADI-IIM(2,2) scheme at
the irregular grid point (xi, y j).

3. Numerical experiments

In this section, numerical examples are carried out to verify the unconditional stability and second
order convergence of the ADI-IIM(2,2) scheme with Algorithm I and Algorithm II. Define the error
function

||Erru||∞ =

max
0≤i≤M,0≤ j≤N,0≤n≤K

∣∣∣un
i, j − Un

i, j

∣∣∣
max

0≤i≤M,0≤ j≤N,0≤n≤K

∣∣∣∣un
i, j

∣∣∣∣ . (3.1)

Example 3.1. For Eqs (2.1)–(2.5), suppose that Ω = [0, 1]× [0, 1], T = 1, Γ is a circle (x − 0.5)2+

(y − 0.5)2 = r2. Ω+ represents the domain outside Γ and Ω− is the domain inside Γ. The coefficient is
set as α = α+ in Ω+ and α = α− in Ω−. The exact solution u is taken as

u (x, y, t) =

0, i f (x, y) ∈ Ω+,
sin (πx) sin (πy) eπt, i f (x, y) ∈ Ω−.

The source term is

f (x, y, t) =

0, i f (x, y) ∈ Ω+,
(1 + 2α−) π2 sin (πx) sin (πy) eπt, i f (x, y) ∈ Ω−.

The jump conditions (2.4)–(2.5) are computed by the exact solution. The proposed ADI-IIM (2,2)
scheme with Algorithm I and Algorithm II are used to solve this problem. We take θ = 0.4, r = 0.21.
Figure 4 displays the shapes of the exact solution, the numerical solutions, and the errors. Figures
4(d)−4(e) show that the errors of the ADI-IIM(2,2) scheme with Algorithm I and Algorithm II are both
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within required accuracy, although the errors in domain Ω− are bigger than those in domain Ω+ since
u = 0 for Ω+. The numerical results are listed in Tables 1–4.
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Figure 4. The exact solution, numerical solutions, and errors with M = N = K = 81 for
Example 3.1.

Table 1. Maximum norm errors of the ADI-IIM(2,2) scheme with small jump ratios (hx =

1/M, hy = 1/N, τ = 1/K, hx = hy = τ).

hx ||Erru||∞(α+ = 0.25, α− = 1) ||Erru||∞(α+ = 1, α− = 0.25)
Algorithm I Order Algorithm II Order Algorithm I Order Algorithm II Order

1/21 2.06×10−3 - 2.62×10−3 - 1.87×10−3 - 1.52×10−3 -
1/43 4.30×10−4 2.18 5.45×10−4 2.19 4.71×10−4 1.92 3.67×10−4 1.98
1/81 1.18×10−4 2.05 1.53×10−4 2.00 1.38×10−4 1.94 1.16×10−4 1.83

1/161 2.94×10−5 2.02 3.85×10−5 2.01 3.50×10−5 2.00 2.95×10−5 1.99
1/321 7.17×10−6 2.04 9.62×10−6 2.01 7.99×10−6 2.14 6.69×10−6 2.15

Table 2. Maximum norm errors of the ADI-IIM(2,2) scheme with large jump ratios (hx =

1/M, hy = 1/N, τ = 1/K, hx = hy = τ).

hx ||Erru||∞(α+ = 0.01, α− = 1) ||Erru||∞(α+ = 1, α− = 0.01)
Algorithm I Order Algorithm II Order Algorithm I Order Algorithm II Order

1/21 2.07×10−3 - 2.17×10−3 - 2.12×10−3 - 2.12×10−3 -
1/43 4.19×10−4 2.23 4.48×10−4 2.20 5.06×10−4 2.00 5.06×10−4 2.00
1/81 1.11×10−4 2.10 1.21×10−4 2.06 1.43×10−4 2.00 1.43×10−4 2.00

1/161 2.72×10−5 2.05 3.00×10−5 2.03 3.61×10−5 2.00 3.61×10−5 2.00
1/321 6.65×10−6 2.04 7.45×10−6 2.02 9.08×10−6 2.00 9.08×10−6 2.00
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For the cases of small jump ratios with α+ > α− and α− > α+, respectively, Table 1 clearly implies
the second-order convergence both in time and space of the proposed ADI-IIM(2,2) scheme with Al-
gorithm I and Algorithm II. Also, the robustness of the proposed scheme is verified by the convergence
rates shown in Table 2 with the ratio of the discontinuous coefficients is large enough. Moreover, the
results of the ADI-IIM(2,2) scheme implemented by Algorithm I and Algorithm II are nearly on the
same order of magnitude.

Tables 3 and 4 show the maximum norm errors ||Erru||∞ of the ADI-IIM(2,2) scheme with large
time steps τ = lhx (l = 2, 4, 8, 12) and long computational time T = 40, which demonstrates the
unconditional stability of the proposed scheme implemented by Algorithm I or Algorithm II whether
the jump ratio is small or large.

Table 3. Maximum norm errors of the ADI-IIM(2,2) scheme for small ratios with large time
steps (T = 40, hx = 1/81, hy = 1/81, τ = lhx).

l ||Erru||∞(α+ = 0.25, α− = 1) ||Erru||∞(α+ = 1, α− = 0.25)
Algorithm I Algorithm II Algorithm I Algorithm II

2 5.94×10−4 8.92×10−4 5.80×10−4 4.186×10−4

4 2.80×10−3 5.33×10−3 2.33×10−3 4.37×10−3

8 1.29×10−2 4.10×10−2 9.42×10−3 3.63×10−2

12 3.28×10−2 1.23×10−1 2.10×10−2 1.12×10−1

Table 4. Maximum norm errors of the ADI-IIM(2,2) scheme for large ratios with large time
steps (T = 40, hx = 1/81, hy = 1/81, τ = lhx).

l ||Erru||∞(α+ = 0.01, α− = 1) ||Erru||∞(α+ = 1, α− = 0.01)
Algorithm I Algorithm II Algorithm I Algorithm II

2 5.71×10−4 6.66×10−4 5.48×10−4 5.47×10−4

4 2.64×10−3 3.42×10−3 2.20×10−3 2.19×10−3

8 1.37×10−2 2.63×10−2 9.33×10−3 1.79×10−2

12 4.40×10−2 8.02×10−2 3.41×10−2 6.03×10−2

Example 3.2. Suppose that Ω = [−2, 2] × [−2, 2], T = 1, Γ is a circle x2 + y2 = r2. Outside of the
circle is Ω+ while inside of the circle is Ω−. The coefficient α = α+ in Ω+ and α = α− in Ω−. The exact
solution u for Eqs (2.1)–(2.5) is

u (x, y, t) =

t+sin x cos y, i f (x, y) ∈ Ω+,
t + x2 + y2, i f (x, y) ∈ Ω−.

The source term is

f (x, y, t) =

(2α+) sin x cos y, i f (x, y) ∈ Ω+,
−4α−, i f (x, y) ∈ Ω−.

We take θ = 0.5 and r = 0.75. The numerical results of the ADI-IIM(2,2) scheme with Algorithm
I and Algorithm II to solve this problem are displayed in Figure 5 and Tables 5–8. The error plots in

AIMS Mathematics Volume 9, Issue 11, 31180–31197.



31193

Figure 5(d)–5(e) show that the main errors of the ADI-IIM(2,2) scheme implemented by Algorithm I
and Algorithm II arising from the interface are both within required accuracy.

x
y

0
2

0.5

2

1U

1

1.5

0
0

-1
-2 -2

(a) Exact solution. (b) Numerical solution by Algorithm I. (c) Numerical solution by Algorithm II.

x

y

-2
2

-1

1 2

0

10-4

1

1

0

2

0
-1 -1

-2 -2

ADI-IIM(2,2): Algorithm I
ADI-IIM(2,2): Algorithm II

-1.5
2

-1

-0.5

1 2

0

10-4

0.5

1
y

0

1

x

0
-1 -1

-2 -2

(d) Errors of Algorithm I and Algorithm II. (e) Differences of errors between Algorithm I and Algorithm II.

Figure 5. The exact solution, numerical solutions, and errors with M = N = 81, K = 20 for
Example 3.2.

Table 5. Maximum norm errors of the ADI-IIM(2,2) scheme with small jump ratios (hx =

4/M, hy = 4/N, τ = 1/K, hx = hy = τ).

hx ||Erru||∞(α+ = 0.25, α− = 1) ||Erru||∞(α+ = 1, α− = 0.25)
Algorithm I Order Algorithm II Order Algorithm I Order Algorithm II Order

4/21 1.35×10−3 - 3.75×10−4 - 1.11×10−3 - 7.83×10−4 -
4/41 4.36×10−4 1.69 9.03×10−5 2.28 3.76×10−4 1.61 2.32×10−4 1.94
4/81 8.38×10−5 2.42 2.78×10−5 1.86 8.00×10−5 2.27 6.33×10−5 2.05

4/161 1.54×10−5 2.46 6.44×10−6 2.13 1.97×10−5 2.04 1.60×10−5 2.00
4/321 5.19×10−6 1.58 1.55×10−6 2.07 5.45×10−6 1.86 4.00×10−6 2.01

Table 6. Maximum norm errors of the ADI-IIM(2,2) scheme with large jump ratios (hx =

4/M, hy = 4/N, τ = 1/K, hx = hy = τ).

hx ||Erru||∞(α+ = 0.25, α− = 1) ||Erru||∞(α+ = 1, α− = 0.25)
Algorithm I Order Algorithm II Order Algorithm I Order Algorithm II Order

4/21 5.38×10−4 - 3.00×10−4 - 1.07×10−3 - 7.86×10−4 -
4/41 2.59×10−4 1.09 5.05×10−5 2.85 3.62×10−4 1.72 2.35×10−4 1.93
4/81 8.39×10−5 1.69 1.73×10−5 1.70 8.55×10−5 2.01 6.55×10−5 2.02

4/161 1.74×10−5 2.25 4.69×10−6 1.90 2.01×10−5 2.11 1.64×10−5 2.01
4/321 4.93×10−6 1.83 8.04×10−7 2.55 5.42×10−6 1.90 4.11×10−6 2.00
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Table 7. Maximum norm errors of the ADI-IIM(2,2) scheme for small ratios with large time
steps (T = 40, hx = 4/81, hy = 4/81, τ = lhx).

l ||Erru||∞(α+ = 0.25, α− = 1) ||Erru||∞(α+ = 1, α− = 0.25)
Algorithm I Algorithm II Algorithm I Algorithm II

2 4.53×10−6 2.03×10−6 1.54×10−3 1.49×10−6

4 5.01×10−6 2.27×10−6 7.58×10−3 1.48×10−6

8 7.00×10−6 4.39×10−6 1.02×10−3 4.86×10−6

12 7.38×10−6 4.69×10−6 1.20×10−5 1.68×10−6

Table 8. Maximum norm errors of the ADI-IIM(2,2) scheme for large ratios with large time
steps(T = 40, hx = 4/81, hy = 4/81, τ = lhx).

l ||Erru||∞(α+ = 0.01, α− = 1) ||Erru||∞(α+ = 1, α− = 0.01)
Algorithm I Algorithm II Algorithm I Algorithm II

2 1.07×10−4 2.07×10−6 2.34×10−3 1.13×10−6

4 1.64×10−3 1.62×10−4 2.69×10−1 5.11×10−4

8 5.90×10−6 8.49×10−6 3.95×10−4 2.36×10−5

12 4.74×10−6 2.41×10−6 9.19×10−5 2.35×10−6

For both of the cases α+ > α− and α− > α+ with either large or small ratios, results in Tables
5 and 6 confirm the second-order convergence both in time and space of the ADI-IIM(2,2) scheme.
The maximum norm errors ||Erru||∞ in Table 7 and Table 8 show clearly the unconditional stability as
well as the robustness of the proposed scheme implemented by Algorithm I and Algorithm II for long
computational time T = 40 and large time steps.

4. Conclusions

In this paper, we propose a new second-order ADI-IIM numerical scheme with Algorithm I and
Algorithm II to solve the 2D wave equation with discontinuous coefficients and sources. The uncondi-
tional stability and second order convergence both in time and space are confirmed numerically. In the
future, we plan to construct a higher order ADI-IIM scheme with second order in time and fourth-order
in space to give more effective simulations of wave propagation in materials with interfaces.
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