The stability of monotone traveling waves to a stream-population model is established in a particular weighted function space via the method of upper and lower solutions and a squeezing technique. By analyzing the behaviors of the traveling wave for a large time period under a small perturbation, we obtain the results of the local stability. The comparison principle and the squeeze theorem also allows us to prove the global stability of the positive steady-state solutions in the special weighted function space by constructing suitable upper and lower solutions.
Citation: Chaohong Pan, Yan Tang, Hongyong Wang. Global stability of traveling waves in monostable stream-population model[J]. AIMS Mathematics, 2024, 9(11): 30745-30760. doi: 10.3934/math.20241485
The stability of monotone traveling waves to a stream-population model is established in a particular weighted function space via the method of upper and lower solutions and a squeezing technique. By analyzing the behaviors of the traveling wave for a large time period under a small perturbation, we obtain the results of the local stability. The comparison principle and the squeeze theorem also allows us to prove the global stability of the positive steady-state solutions in the special weighted function space by constructing suitable upper and lower solutions.
[1] | Z. Huang, C. H. Ou, Speed determinacy of traveling waves to a stream-population model with allee effect, SIAM J. Appl. Math., 80 (2020), 1820–1840. https://doi.org/10.1137/19M1275486 doi: 10.1137/19M1275486 |
[2] | F. Lutscher, G. Seo, The effect of temporal variability on persistence conditions in rivers, J. Theor. Biol., 283 (2011), 53–59. https://doi.org/10.1016/j.jtbi.2011.05.032 doi: 10.1016/j.jtbi.2011.05.032 |
[3] | E. Pachepsky, F. Lutscher, R. M. Nisbet, M. A. Lewis, Persistence, spread and the drift paradox, Theor. Popul. Biol., 67 (2005), 61–73. https://doi.org/10.1016/j.tpb.2004.09.001 |
[4] | R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x doi: 10.1111/j.1469-1809.1937.tb02153.x |
[5] | A. Kolmogorov, I. Petrovsky, N. Piskunov, Study of the diffusion equation with growth of the quantity of matter and its application to a biology Problem, Dynamics of Curved Fronts, 1988,105–130. https://doi.org/10.1016/B978-0-08-092523-3.50014-9 |
[6] | K. Kirchgassner, On the nonlinear dynamics of travelling fronts, J. Differ. Equ., 96 (1992), 256–278. https://doi.org/10.1016/0022-0396(92)90153-E doi: 10.1016/0022-0396(92)90153-E |
[7] | D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22 (1976), 312–355. https://doi.org/10.1016/0001-8708(76)90098-0 doi: 10.1016/0001-8708(76)90098-0 |
[8] | J. B. Wang, X. Q. Zhao, Uniqueness and global stability of forced waves in a shifting environment, Proc. Amer. Math. Soc., 147 (2019), 1467–1481. https://doi.org/10.1090/proc/14235 doi: 10.1090/proc/14235 |
[9] | H. Y. Wang, C. H. Pan, C. H. Ou, Existence, uniqueness and stability of forced waves to the Lotka-Volterra competition system in a shifting environment, Stud. Appl. Math., 148 (2022), 186–218. https://doi.org/10.1111/sapm.12438 doi: 10.1111/sapm.12438 |
[10] | G. Y. Zhao, S. G. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pure. Appl., 95 (2011), 627–671. https://doi.org/10.1016/j.matpur.2010.11.005 doi: 10.1016/j.matpur.2010.11.005 |
[11] | X. X. Bao, Z. C. Wang, Existence and stability of time periodic traveling waves for a periodic bistable Lotka-Volterra competition system, J. Differ. Equ., 255 (2013), 2402–2435. https://doi.org/10.1016/j.jde.2013.06.024 doi: 10.1016/j.jde.2013.06.024 |
[12] | M. Mei, C. K. Lin, C. T. Lin, J. W. H. So, Traveling wavefronts for time-delayed reaction-diffusion equation: (I) Local nonlinearity, J. Differ. Equ., 247 (2009), 495–510. https://doi.org/10.1016/j.jde.2008.12.026 doi: 10.1016/j.jde.2008.12.026 |
[13] | M. Mei, C. H. Ou, X. Q. Zhao, Global stability of monotone traveling waves for nonlocal time-delayed reaction diffusion equations, SIAM J. Math. Anal., 42 (2010), 2762–2790. https://doi.org/10.1137/090776342 doi: 10.1137/090776342 |
[14] | M. Mei, Y. Wang, Remark on stability of traveling waves for nonlocal Fisher-KPP equations, Int. J. Numer. Anal. Model. Ser. B, 2 (2011), 379–401. |
[15] | H. F. Xu, Q. X. Zhu, W. X. Zheng, Exponential stability of stochastic nonlinear delay systems subject to multiple periodic impulses, IEEE T. Automat. Contr., 69 (2024), 2621–2628. https://doi.org/10.1109/TAC.2023.3335005 doi: 10.1109/TAC.2023.3335005 |
[16] | X. T. Yang, Q. X. Zhu, H. Wang, Exponential stabilization of stochastic systems via novel event-triggered switching controls, IEEE T. Automat. Contr., 2024, https://doi.org/10.1109/TAC.2024.3406668 |
[17] | X. Hou, Y. Li, Local stability of traveling wave solutions of nonlinear reaction diffusion equations, Discrete Cont. Dyn., 15 (2006), 681–701. https://doi.org/10.3934/dcds.2006.15.681 doi: 10.3934/dcds.2006.15.681 |
[18] | A. Alhasanat, C. H. Ou, Stability of traveling waves to the Lotka-Volterra competition model, Complexity, 2019 (2019), 6569520. https://doi.org/10.1155/2019/6569520 doi: 10.1155/2019/6569520 |
[19] | Z. X. Shi, W. T. Li, C. P. Cheng, Stability and uniqueness of traveling wavefronts in a two-dimensional lattice differential equation with delay, Appl. Math. Comput., 208 (2009), 484–494. https://doi.org/10.1016/j.amc.2008.12.022 doi: 10.1016/j.amc.2008.12.022 |
[20] | G. S. Chen, S. L. Wu, C. H. Hsu, Stability of traveling wavefronts for a discrete diffusive competition system with three species, J. Math. Anal. Appl., 474 (2019), 909–930. https://doi.org/10.1016/j.jmaa.2019.01.079 doi: 10.1016/j.jmaa.2019.01.079 |
[21] | Q. X. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE T. Automat. Contr., 64 (2019), 3764–3771. https://doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067 |
[22] | Y. Zhao, Q. X. Zhu, Stabilization of stochastic highly nonlinear delay systems with neutral-term, IEEE T. Automat. Contr., 68 (2023), 2544–2551. https://doi.org/10.1109/TAC.2022.3186827 doi: 10.1109/TAC.2022.3186827 |
[23] | Y. Wu, X. Xing, Stability of traveling waves with critical speeds for $P$-degree Fisher-type equations, Discrete Cont. Dyn., 20 (2008), 1123–1139. https://doi.org/10.3934/dcds.2008.20.1123 doi: 10.3934/dcds.2008.20.1123 |
[24] | G. Lv, M. Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, Nonlinearity, 23 (2010), 845–873. https://doi.org/10.1088/0951-7715/23/4/005 doi: 10.1088/0951-7715/23/4/005 |
[25] | C. H. Chang, The stability of traveling wave solutions for a diffusive competition system of three species, J. Math. Anal. Appl., 459 (2018), 564–576. https://doi.org/10.1016/j.jmaa.2017.10.013 doi: 10.1016/j.jmaa.2017.10.013 |
[26] | Y. Li, W. T. Li, Y. R. Yang, Stability of traveling waves of a diffusive susceptible-infective-removed (SIR) epidemic model, J. Math. Phys., 57 (2016), 041504. https://doi.org/10.1063/1.4947106 doi: 10.1063/1.4947106 |
[27] | Y. X. Guo, Exponential stability analysis of travelling waves solutions for nonlinear delayed cellular neural networks, Dyn. Syst., 32 (2017), 490–503. https://doi.org/10.1080/14689367.2017.1280447 doi: 10.1080/14689367.2017.1280447 |
[28] | Z. Z. Li, B. X. Dai, Stability and Hopf bifurcation analysis in a Lotka-Volterra competition-diffusion-advection model with time delay effect, Nonlinearity, 34 (2021), 3271–3313. https://doi.org/10.1088/1361-6544/abe77a doi: 10.1088/1361-6544/abe77a |
[29] | H. Wang, Q. X. Zhu, Global stabilization of a class of stochastic nonlinear time-delay systems with SISS inverse dynamics, IEEE T. Automat. Contr., 65 (2020), 4448–4455. https://doi.org/10.1109/TAC.2020.3005149 doi: 10.1109/TAC.2020.3005149 |
[30] | S. Ma, X. Q. Zhao, Global asymptotic stability of minimal fronts in monostable lattice equations, Discret. Cont. Dyn., 21 (2008), 259–275. https://doi.org/10.3934/dcds.2008.21.259 doi: 10.3934/dcds.2008.21.259 |
[31] | C. Vargas-De-Leǒn, Global stability of nonhomogeneous coexisting equilibrium state for the multispecies Lotka-Volterra mutualism models with diffusion, Math. Method. Appl. Sci., 45 (2022), 2123–2131. https://doi.org/10.1002/mma.7912 doi: 10.1002/mma.7912 |
[32] | C. Vargas-De-Leǒn, On the global stability of SIS, SIR and SIRS epidemic models with standard incidence, Chaos Soliton. Fract., 44 (2011), 1106–1110. https://doi.org/10.1016/j.chaos.2011.09.002 doi: 10.1016/j.chaos.2011.09.002 |
[33] | J. E. Cohen, Convexity of the dominant eigenvalue of an essentially nonnegative matrix, Proc. Amer. Math. Soc., 81 (1981), 657–658. https://doi.org/10.1090/s0002-9939-1981-0601750-2 doi: 10.1090/s0002-9939-1981-0601750-2 |
[34] | D. Henry, Geometric theory of semilinear parabolic equations, In: Lecture Notes in Mathematics, Berlin: Springer, 1981. https://doi.org/10.1007/BFb0089647 |
[35] | P. Hess, Periodic-parabolic boundary value problems and positivity, Wiley: Longman Scientific & Technical, 1991. |
[36] | H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306 (1979), 94–121. https://doi.org/10.1515/crll.1979.306.94 doi: 10.1515/crll.1979.306.94 |