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1. Introduction

In this paper, we mainly focus on the following stream-population model [1]
∂u
∂t
= d

∂2u
∂x2 − α

∂u
∂x
− σu + µv,

∂v
∂t
= ϵ

∂2v
∂x2 + σu − µv + f (v),

(1.1)

with the initial data
u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0,∀x ∈ R. (1.2)

Here, u(x, t), v(x, t) are the population densities of neuston and benthon respectively; σ represents the
per capita drift rate at which the species returns to the benthic population; µ is the per capita rate at
which individuals in the benthic population enter the drift; α is the speed of the flow; d, ϵ are the
diffusion coefficients of species u, v respectively; the reaction term f (v) is a strictly convex function of
second order differentiable satisfying f (0) = f (1) = 0, f ′(0) > 0 > f ′(1), and f (v) > 0 for v ∈ (0, 1).
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σ, µ, α, d, ϵ are positive constants and possess the biological meaning [2, 3]. It is worth mentioning
that the benthon basically do not move horizontally since ϵ ≪ 1. Obviously, (0, 0) and

(
µ

σ
, 1

)
are the

equilibria and further we can obtain that (0, 0) is unstable and
(
µ

σ
, 1

)
is stable for the corresponding

spatially homogeneous system of (1.1).
In this paper, we are interested in the nonnegative traveling wave, connecting (0, 0) and

(
µ

σ
, 1

)
, which

possesses the wave profile as

u(x, t) = U(z), v(x, t) = V(z), z = x − ct, (1.3)

where the wave speed c ≥ 0. Substituting (1.3) into (1.1), yields the new wave profile as − cU
′
= dU

′′
− αU

′
− σU + µV ,

− cV
′
= ϵV

′′
+ σU − µV + f (V),

(1.4)

with the boundary value condition

(U,V)(−∞) =
(
µ

σ
, 1

)
, (U,V)(∞) = (0, 0). (1.5)

It is worth pointing out that the existence of the traveling wave solution of (1.4) was proved, and the
determinacy of linear and nonlinear selection of the minimal wave speed was further established by
employing the method of upper and lower solutions in [1].

On this basis of the existence, we shall investigate the local and the global stability of the monotone
traveling waves. In this progress, we need to conform that the solution of (1.1) is infinitely close
to (U,V)(x − ct) when t is large enough for given initial data u0(x) and v0(x). To begin with, we set

(u, v)(x, t) = (U,V)(z, t), (1.6)

and then (1.4) can be transformed into the partial differential modelUt = dUzz + (c − α)Uz − σU + µV,

Vt = ϵVzz + cVz + σU − µV + f (V),
(1.7)

subject to
U(z, 0) = u0(z),V(z, 0) = v0(z),∀z ∈ R. (1.8)

From the above system (1.7) we know that (U,V)(z) is also its steady state.
The investigation of the stabilities of traveling wave solutions could be traced back to the original

works [4, 5]. Then many works assessing stability are available, but differences among them are
frequent. For examples, the stability of the traveling waves with critical speed [6] and noncritical
speed [7] in appropriate weighted Banach spaces is proved. The global stability of the forced
waves [8,9] is presented. The time-periodic traveling waves are asymptotically stable [10,11]. Mei et.
al. [12–14] proved the exponential stability of traveling wave fronts, and the exponential stability of
stochastic systems is demonstrated [15, 16]. By analyzing the location of the spectrum, the local
stability of the traveling waves are investigated [17, 18]. For more related works, we refer to [19–32],
and the references cited therein.
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Despite the success in the study of the existence and the speed determinacy of traveling waves to
the model (1.1), the local and global stability of the traveling waves in the monostable still remains
unsolved. In this paper, mainly inspired by the ideas in [18], we devote our attention to finishing the
issue of stability for the steady state (U,V)(z). Firstly, the local stability is discussed on the basis of
asymptotic behavior of the traveling waves near the equilibrium and the method of spectrum analysis.
When analyzing the eigenvalue problem, we need to overcome the great challenge brought by the
high-order nonlinear terms. Then by using the result of local stability, we should choose appropriate
weighted Banach space. Furthermore, also by constructing upper and lower solutions, we prove that
the solution (U,V) in the moving coordinates converges to the steady state. The new results on the
global stability is established in the special weighted function space by using the squeeze theorem.

This paper are organized as follows. In section 2, we present some preliminaries and main results.
In section 3, we prove the local stability of the traveling waves. The global stability of the steady
state (U,V)(z) in a special choice on the weighted function space L∞ω (R) is investigated in section 4.

2. Preliminaries and main results

First, linearizing the system (1.4) at (0, 0) we obtain − cU
′
= dU

′′
− αU

′
− σU + µV ,

− cV
′
= ϵV

′′
+ σU − µV + f ′(0)V .

(2.1)

The transformation
(U,V)(z) ∼ (ξ1e−λz, ξ2e−λz) (2.2)

with λ > 0 and ξi(i = 1, 2) being positive constants, allows us to transform the discussion of the
asymptotic behaviors at infinitely in variable z to the following eigenvalue problem

cλξ =
(

dλ2 + αλ − σ µ

σ ϵλ2 − µ + f ′(0)

)
ξ, (2.3)

where ξ = (ξ1, ξ2)T . Letting

A1(λ) = dλ2 + αλ − σ, A2(λ) = ϵλ2 − µ + f ′(0), A(λ) =
(

A1(λ) µ

σ A2(λ)

)
, (2.4)

then the eigenvalue problem (2.3) is equivalent to r(λ)ξ = A(λ)ξ. Further, we can obtain the eigenvalues

r±(λ) =
A1(λ) + A2(λ) ±

√
(A1(λ) − A2(λ))2 + 4σµ

2
. (2.5)

As we know, the principal eigenvalue is greater than or equal to the real part of matrix eigenvalues.
According to [33], the principal eigenvalue of matrix A(λ) is

r(λ) = r+(λ), (2.6)
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where r+ is real number and for any λ ∈ (0,+∞),

r+(λ) =
1
2

[
A1(λ) + A2(λ) +

√
(A1(λ) + A2(λ))2 − 4(A1(λ)A2(λ) − σµ)

]
=

1
2

[
(d + ϵ)λ2 + αλ − σ − µ + f ′(0) +

√
[(d − ϵ)λ2 + αλ − σ + µ − f ′(0)]2 + 4σµ

]
> 0.

(2.7)

Actually, through the classified discussion of the positive and negative of A1and A2, r+(λ) > 0 holds
true.

Lemma 2.1. ( [1], see Section 2) r(λ), defined in (2.7), is a real, continuous, and convex function with
respect to λ ∈ R. Assume that

c0 = in f
λ∈(0,∞)

r(λ)
λ
∈ R+, (2.8)

where c0 is called the minimal wave speed, then we can obtain that the equation cλ = r(λ) has

• no solution, if c < c0;
• a unique solution λ(c0), if c = c0;
• two solutions λ1(c) and λ2(c) with λ1(c) < λ2(c), if c > c0.

Based on the above analysis, we could give the asymptotic behaviors as z → ∞ with the following
lemma.

Lemma 2.2. ( [1], see Section 2) The asymptotic behaviors of the traveling wave solution (U(z),V(z))
(see (2.1)) can be represented as follows:(

U
V

)
= C1

(
ξ1(λ1(c))
ξ2(λ1(c))

)
e−λ1(c)z +C2

(
ξ1(λ2(c))
ξ2(λ2(c))

)
e−λ2(c)z (2.9)

with C1 > 0 or C1 = 0,C2 > 0, where the eigenvectors corresponding to eigenvalues λi(c)(i = 1, 2) are(
ξ1(λi(c))
ξ2(λi(c))

)
=

(
µ

cλi(c) − A1(λi(c))

)
or

(
cλi(c) − A2(λi(c))

σ

)
. (2.10)

The proof of the above lemmas can refer to the proof of Theorem 1 in [18], which will not be repeated
here.

Before stating our main results, let us make the following notation.
Notation: Throughout the paper, Lp are function spaces defined by using a natural generalization of
the p-norm for finite dimensional vector spaces. The weighted Lebesgue space Lp

ω with 1 ≤ p < ∞ can
be expressed by

Lp
ω =

{
g(z) :

g(z)
ω(z)

∈ Lp(R)
}

(2.11)

with the norm

∥g(z)∥Lp
ω
=

(∫ ∞

−∞

|g(z)|p

|ω(z)|p
dz

) 1
p

, (2.12)
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where the weighted function

ω(z) =

e−β(z−z0), z > z0,

1, z ≤ z0
(2.13)

for some positive constants z0 and β.
With the introduction above, we state our main conclusions for two theorems.

Theorem 1. (Local stability) For any c > c0, the wavefront (U,V)(z) is locally stable in the weighted
function space Lp

ω if β ∈ (λ1, λ2) to be chosen.

Theorem 2. (Global stability) Assume that c > c0, λ1 < β < λ2 and the initial data U(z, 0) = U0(z)
and V(z, 0) = V0(z) satisfy

(0, 0) ≤ (U0,V0)(z) ≤
(
µ

σ
, 1

)
, ∀z ∈ R,

lim inf
z→−∞

(U0,V0)(z) > (0, 0),

and

|U0(z) − U(z)| ∈ L∞ω (R), |V0(z) − V(z)| ∈ L∞ω (R).

Then (1.7) with initial data admits a unique solution (U,V)(z, t) satisfying

(0, 0) ≤ (U,V)(z, t) ≤
(
µ

σ
, 1

)
, ∀(z, t) ∈ R × R+.

Moreover, the inequalities

sup
z∈R
|U(z, t) − U(z)| ≤ ke−ηt, t > 0

and

sup
z∈R
|V(z, t) − V(z)| ≤ ke−ηt, t > 0

hold for some positive constants k and η.

3. Proof of Theorem 1

The purpose in this section is to apply the weighted energy method and spectral analysis to prove
the local stability of the traveling waves presented in Theorem 1.

First, we assume that

U(z, t) = U(z) + δψ1(z)eχt,V(z, t) = V(z) + δψ2(z)eχt, (3.1)

where δ ≪ 1, χ is a parameter, and ψ1(z) and ψ2(z) are real functions. Substituting (U(z, t),V(z, t)) into
system (1.7), and linearizing the new system with respect to (U,V)(z), we obtain the following spectral
problem:

χΨ = LΨ := DΨ′′ +CΨ′ + BΨ, (3.2)

where

Ψ = (ψ1, ψ2)T ,D =
(

d 0
0 ϵ

)
,C =

(
c − α 0

0 c

)
, B =

(
−σ µ

σ −µ + f ′(V)

)
, (3.3)
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where the sign of the maximal real part to the spectrum of the operator L is related to the local stability
of the traveling wave solution. To proceed, we set

Ψ =

(
ψ1

ψ2

)
=

(
ωϕ1

ωϕ2

)
, (3.4)

where ϕ1 and ϕ2 are the functions in the space Lp, ω has been defined in (2.13) with λ1 < β < λ2.
Substitute (3.4) into (3.2) to obtain a new spectral problem as:

χΦ = LωΦ := DΦ′′ + HΦ′ + JΦ, (3.5)

where Φ = (ϕ1, ϕ2)T , D is defined in (3.3) and

H =
(

c − α + 2dω′

ω
0

0 c + 2ϵ ω
′

ω

)
,

J =
(

dω′′

ω
+ (c − α)ω

′

ω
− σ µ

σ ϵ ω
′′

ω
+ cω

′

ω
− µ + f ′(V)

)
.

(3.6)

Since H(z) and J(z) are bounded real matrix functions and ω, ω′, ω′′ exist as z→ ±∞, we define

H± = lim
z→±∞

H(z), J± = lim
z→±∞

J(z). (3.7)

Further, we analyze the position of the essential spectrum for the operator Lω and give the following
lemma.

Lemma 3.1. ( [34], see Theorem A.2) If we define

S ± = {χ|det(−θ2D + iθH± + J± − χI) = 0, −∞ < θ < ∞}, (3.8)

then the essential spectrum of Lω is contained in the union of the regions inside or on the curves S +
and S −, which are on the left-half complex plane, when the condition λ1 < β < λ2 is satisfied.

Proof. We prove the lemma 3.1 for two cases with respect to z.

Case 1. When z→ +∞ in (3.6), we have

H+ = lim
z→+∞

H(z) =
(

c − α − 2dβ 0
0 c − 2ϵβ

)
,

J+ = lim
z→+∞

J(z) =
(

dβ2 − (c − α)β − σ µ

σ ϵβ2 − cβ − µ + f ′(0)

)
.

(3.9)

Therefore, the equation det(−θ2D + iθH+ + J+ − χI) = 0 has two solutions, i.e.

χ1,2 =
1
2

{
(E +G) + i(F + K) ±

√
[(E −G) + i(F − K)]2 + 4σµ

}
(3.10)

with E = −dθ2 + A1(β) − cβ, F = (c − α − 2dβ)θ, G = −ϵθ2 + A2(β) − cβ, K = (c − 2ϵβ)θ, where A1

and A2 have been noted in (2.4). Assume that

S +,1 = {χ1| − ∞ < θ < ∞}, S +,2 = {χ2| − ∞ < θ < ∞}. (3.11)

AIMS Mathematics Volume 9, Issue 11, 30745–30760.



30751

By Euler’s formula, we obtain the real parts of the eigenvalues χ1,2 as follows:

Re(χ1) =
1
2

[
(E +G)

+

√
1
2

(√
((E −G)2 + (F − K)2 + 4σµ)2 − 16(F − K)2σµ + (E −G)2 − (F − K)2 + 4σµ

)]
,

Re(χ2) =
1
2

[
(E +G)

−

√
1
2

(√
((E −G)2 + (F − K)2 + 4σµ)2 − 16(F − K)2σµ + (E −G)2 − (F − K)2 + 4σµ

)]
.

(3.12)

Obviously, Re(χ1) > Re(χ2). By a simple calculation, one can obtain that

Re(χ1) <
1
2

[
(E +G) +

√
(E −G)2 + 4σµ

]
=

1
2

[
−(d + ϵ)θ2 + A1(β) + A2(β) +

√
−(d − ϵ)θ2 + (A1(β) − A2(β))2 + 4σµ

]
− cβ

≤
1
2

[
A1(β) + A2(β) +

√
(A1(β) − A2(β))2 + 4σµ

]
− cβ

= r+(β) − cβ

< 0.

(3.13)

since the formulas (2.7 and 2.8) and λ1 < β < λ2 are satisfied for c > c0. That is to say
S + = S +,1 ∪ S +,2 is on the left-half complex plane.

Case 2. When z→ −∞, it follows that

H− = lim
z→−∞

H(z) =
(

c − α 0
0 c

)
,

J− = lim
z→−∞

J(z) =
(
−σ µ

σ −µ + f ′(0)

)
.

(3.14)

Similar to Case 1, solving the equation det(−θ2D + iθH− + J− − χI) = 0, we obtain

χ3,4 =
1
2

[
(M + P) + i(N + Q) ±

√
((M − P) + i(N − Q))2 + 4σµ

]
, (3.15)

where M = −dθ2 − σ, N = (c − α)θ, P = −ϵθ2 − µ + f ′(1), Q = cθ. Further, Euler’s formulas allow us
to obtain the maximal real part of χ3,4 as

Re(χ3) =
1
2

[
(M + P)

+

√
1
2

(√(
(M − P)2 + (N − Q)2 + 4σµ

)2
− 16(N − Q)2σµ + (M − P)2 − (N − Q)2 + 4σµ

)]
≤

1
2

[
(M + P) +

√
(M + P)2 − 4(MP − σµ)

]
< 0,

(3.16)

because of M + P < 0 and MP − σµ > 0. It means that S − = {χ3| − ∞ < θ < ∞} ∪ {χ4| − ∞ < θ < ∞}

is also on the left-half complex plane.
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By the above analysis, the essential spectrum of the operator Lω is on the left-half complex plane.
□

If the sign of the real part of the principal eigenvalue in the point spectrum (3.2) is negative, the
traveling wave solutions is locally stable. So, we need the following step to check the sign of the
principal eigenvalue to ensure the result of local stability.

Finally, we judge the sign of the principal eigenvalue in the point spectrum to prove the local
stability. We first discuss the asymptotic behavior of the system (1.4) as z → −∞. By linearizing the
system (1.4) at ( µ

σ
, 1), we have − cU

′
= dU

′′
− αU

′
− σU + µV ,

− cV
′
= ϵV

′′
+ σU − µV + f ′(1)(V − 1).

(3.17)

Let
(U,V)(z) =

(
µ

σ
− ξ3eλz, 1 − ξ4eλz

)
(3.18)

with λ > 0 and ξ3, ξ4 being positive constants. Substituting (3.18) into (3.17), it follows that(
dλ2 + (c − α)λ − σ µ

σ ϵλ2 + cλ − µ + f ′(1)

)
ξ = 0, (3.19)

where ξ = (ξ3, ξ4)T . Suppose that λi(i = 3, 4, 5, 6) are the eigenvalues to the left matrix of Eq (3.19).
According to the Vieta’s theorem, we know these four eigenvalues are two positive numbers and two
negative numbers. Without loss of generality, we assume that λ3 > λ4 > 0 > λ5 > λ6 for c > 0. Then
the wave profile has the following asymptotic behaviors:(

U
V

)
=

( µ

σ

1

)
−C3

(
ξ3(λ4)
ξ4(λ4)

)
eλ4z −C4

(
ξ3(λ3)
ξ4(λ3)

)
eλ3z, as z→ −∞ (3.20)

with C3 > 0 or C3 = 0,C4 > 0.
To associate with (3.2), we consider the following system

ut = Duzz +Cuz + Bu, (3.21)

where u(z, t) = (u1(z, t), u2(z, t))T and D, C, B are defined in (3.3). For a given solution semiflow
Qt = u(z, t, ψ) of (3.21) with any given initial data ϕ ∈ Lp, we denote by eχtΨ the solution of (3.21). It
is easy to see that Qt is compact and strongly positive. By the Krein-Rutman theorem (see, e.g., [35]),
Qt has a simple principal eigenvalue χmax with a strongly positive eigenvector, and all other eigenvalues
must satisfy eχtΨ < eχmaxtΨ.

Next, we shall discuss the eigenvalue χ for two cases as χ = 0 and χ > 0.
Case 1. When χ = 0, it can be directly calculated that (−U

′
,−V

′
)(z) is the corresponding positive

eigenvector derived form (3.2), where the asymptotic behavior of the solution of (2.1),
i.e. (U,V)(z) ∼ (C1e−λ1z,C1e−λ1z), C1 > 0, as z → ∞. Although it could be check that the positive
eigenvector (−U

′
,−V

′
)(z) is not belong to the weighted space Lp

ω since λ1 < β < λ2.
Case 2. In this case, we discuss the eigenvalue χ > 0 to produce a contrary for two cases with respect
to z, namely, z → −∞ and z → ∞. Assume that χ > 0 and Ψ ∈ Lp

ω. Then we know that the minimal
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30753

positive eigenvalue of theΨ is larger than β. SinceΨ(z) = (−U
′
,−V

′
)(z) is a positive solution of (3.21),

it follows that Ψ(z) > Ψ as z→ ∞.
When z → −∞, assume that Ψ(z) has the asymptotic behavior as keλz for some positive k and λ.

Substituting it into the spectral problem (3.5), we obtain the characteristic equation in eigenvalue χ as
follows: ∣∣∣∣∣∣ dλ2 + (c − α)λ − σ − χ µ

σ ϵλ2 + cλ − µ + f ′(1) − χ

∣∣∣∣∣∣ = 0. (3.22)

Next, we shall show the relationship between the four roots of (3.22) denoted by λ̂i(i = 3, 4, 5, 6) and
λi(i = 3, 4, 5, 6), namely, λ̂3 > λ3, λ̂4 > λ4, λ̂5 < λ5, λ̂6 < λ6. In fact, when χ > 0, the parabolic

p1 : dλ2 + (c − α)λ − σ − χ = 0,
p2 : dλ2 + (c − α)λ − σ = 0,

(3.23)

have two roots r±p1
and r±p2

with one positive and one negative, respectively. It is easy to see that r−p1
< r−p2

and r+p1
< r+p2

. Similar discussion to

p3 : ϵλ2 + cλ − µ + f ′(1) − χ = 0,
p4 : ϵλ2 + cλ − µ + f ′(1) = 0,

(3.24)

we also obtain that r−p3
< r−p4

and r+p3
< r+p4

. Further, we know that r−p1
, r+p1

, r−p3
and r+p3

are also the roots
of

p5 : (dλ2 + (c − α)λ − σ − χ)(ϵλ2 + cλ − µ + f ′(1) − χ) = 0 (3.25)

and r−p2
, r+p2

, r−p4
and r+p4

are the roots of

p6 : (dλ2 + (c − α)λ − σ)(ϵλ2 + cλ − µ + f ′(1)) = 0. (3.26)

That is to say that the positive roots of p5 related to p6 are moving right. Therefore, when the curves
of p5 and p6 intersects with the same line y = µσ, the points are denoted by λ̂i(i = 3, 4, 5, 6) and
λi(i = 3, 4, 5, 6), respectively. And the points of intersection satisfy λ̂3 > λ3, λ̂4 > λ4, λ̂5 < λ5, λ̂6 < λ6.
In other words, the positive roots of λ are increasing with respect to χ. This indicates that Ψ(z) ∼ k1eλ3z

and Ψ(z) ∼ k2eλ̂3z as z→ −∞.
Thus, we choose k sufficient large such that kΨ ≥ |Ψ|. By the comparison principal for the

system (3.21), it must be kΨ(z) ≥ |Ψ|eχt. Hence the assumption χ > 0 is incorrect. This implies that
the real parts of all eigenvalues χ of (3.5) should not be positive for Ψ ∈ Lp

ω.
The proof is complete.

4. Proof of Theorem 2

In this section, we will prove Theorem 2. In order to realize it, we need the following conclusion.
(Comparison principle) Let (U+,V+)(z, t) and (U−,V−)(z, t) be the solutions of (1.7) with respect to
the initial values

U+0 (z) = max{U0(z),U(z)}, V+0 (z) = max{V0(z),V(z)},

U−0 (z) = min{U0(z),U(z)}, V−0 (z) = min{V0(z),V(z)}
(4.1)
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respectively; namely 
U±t = dU±zz + (c − α)U±z − σU± + µV±,

V±t = ϵV
±
zz + cV±z + σU± − µV± + f (V±),

(U±,V±)(z, 0) = (U±0 ,V
±
0 )(z).

(4.2)

It holds that
(0, 0) ≤ (U−0 ,V

−
0 )(z) ≤ (U0,V0)(z) ≤ (U+0 ,V

+
0 )(z) ≤

(
µ

σ
, 1

)
,

(0, 0) ≤ (U−0 ,V
−
0 )(z) ≤ (U,V)(z) ≤ (U+0 ,V

+
0 )(z) ≤

(
µ

σ
, 1

)
.

(4.3)

By comparison principle, we have

(0, 0) ≤ (U−,V−)(z, t) ≤ (U,V)(z, t) ≤ (U+,V+)(z, t) ≤
(
µ

σ
, 1

)
,∀(z, t) ∈ R × R+,

(0, 0) ≤ (U−,V−)(z, t) ≤ (U,V)(z) ≤ (U+,V+)(z, t) ≤
(
µ

σ
, 1

)
,∀(z, t) ∈ R × R+.

(4.4)

If both (U+,V+)(z, t) and (U−,V−)(z, t) converge to (U,V)(z), then the squeezing theorem ensures the
global stability of system (1.7) stated in (2).

Lemma 4.1. Under the conditions given in Theorem 2, (U+,V+)(z, t) converges to (U,V)(z).

Proof. To begin with, we suppose that

R(z, t) = U+(z, t) − U(z), S (z, t) = V+(z, t) − V(z),∀(z, t) ∈ R × R+, (4.5)

which satisfies the initial values

R(z, 0) = U+0 (z) − U(z), S (z, 0) = V+0 (z) − V(z). (4.6)

By (4.2) and (4.4), we have

(0, 0) ≤ (R, S )(z, t) ≤
(
µ

σ
, 1

)
,∀(z, t) ∈ R × R+. (4.7)

Through (1.4) and (4.3), the following inequality(
R
S

)
t

≤ D
(

R
S

)
zz

+C
(

R
S

)
z

+ B0

(
R
S

)
(4.8)

holds for the matrices C and D defined in (3.3), and

B0 =

(
−σ µ

σ −µ + f ′(0)

)
. (4.9)

Then we consider the convergence of (R, S )(z, t) for two cases with respect to z.
Case 1. When z > z0, we first define(

R
S

)
(z, t) = e−β(z−z0)

(
R
S

)
(z, t), (4.10)
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so as to investigate the stability in weighted function space L∞ω for all (z, t) ∈ R×R+, where R and S are
the functions in L∞(R), the weighted function ω(z) is defined in (3.3). Substituting (4.10) into (4.8),
we obtain(

R
S

)
t

≤ D
(

R
S

)
zz

+

(
c − α − 2dβ 0

0 c − 2ϵβ

) (
R
S

)
z

+

(
A1(β) − cβ µ

σ A2(β) − cβ

) (
R
S

)
:=

(
L1(R, S )
L2(R, S )

)
,

(4.11)

where A1(β) and A2(β) are defined in (2.4).
Further, we choose

R1(z, t) = k1ζ1e−η1t, S 1(z, t) = k1ζ2e−η1t, ∀(z, t) ∈ R × R+, (4.12)

for some positive constants k1 and η1, where (ζ1, ζ2)T = (ζ1(β), ζ2(β))T is the eigenvector of matrix M1.
In fact,

M1 =

(
A1(β) − cβ µ

σ A2(β) − cβ

)
(4.13)

which has the eigenvalue

λ1 =
1
2

(
A1(β) + A2(β) +

√
(A1(β) − A2(β))2 + 4σµ

)
− cβ.

The associated eigenvectors can be found by direct calculation as follows:

ζ1(β) = µ, ζ2(β) =
1
2

(
−A1(β) + A2(β) +

√
(A1(β) − A2(β))2 + 4σµ

)
. (4.14)

It is not hard to check that, for λ1 < β < λ2, ζ1(β), ζ2(β) are positive and λ1 is negative. Moreover, one
can obtain

L1(R1, S 1) = λ1R1 < 0, L2(R1, S 1) = λ1S 1 < 0. (4.15)

Thus, we can choose η1 ≤ −λ1 such that(
R1

S 1

)
t

= −η1k1

(
ζ1

ζ2

)
e−η1t ≥

(
L1(R1, S 1)
L2(R1, S 1)

)
. (4.16)

Once we choose k1 ≥ max
z∈R

{
R(z,0)
ζ1
, S (z,0)

ζ2

}
to make

(R1, S 1)(z, 0) = (k1ζ1, k2ζ2) ≥ (R, S )(z, 0),

then by comparison principle on unbounded domain, ∀(z, t) ∈ R × R+, we obtain

(R, S )(z, t) = e−β(z−z0)(R, S )(z, t) ≤ k1(ζ1, ζ2)e−β(z−z0)−η1t. (4.17)

Therefore, the above inequality holds for any fixed point z0. That is to say, for z > z0, (R, S )(z, t)
converges to (0, 0).
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Case 2. When z ≤ z0, the system marked (R, S )(z, t) can be shown as(
R
S

)
t

= D
(

R
S

)
zz

+C
(

R
S

)
z

+

(
−σ µ

σ −µ

) (
R
S

)
+

(
0

f (S + V) − f (V)

)
. (4.18)

Here, f (S + V) − f (V) is a second-order differentiable function that can be expressed as f ′(1)S + h(S )
(h(S ) also is second-order differentiable and h(0) = 0) as (U,V)(z) →

(
µ

σ
, 1

)
. Consequently, we need

to select z0, so that(
R
S

)
t

≤ D
(

R
S

)
zz

+C
(

R
S

)
z

+

(
−σ µ

σ −µ + f ′(1) + ε1

) (
R
S

)
+

(
0

h(S )

)
(4.19)

for some given enough small positive ε1 and ε1 ≪ µ − f ′(1).
From the following autonomous system(

R̂
Ŝ

)
t

=

(
−σ µ

σ −µ + f ′(1) + ε1

) (
R̂
Ŝ

)
+

(
0

h(Ŝ )

)
(4.20)

with the initial data
R̂(0) ≥ R(z, 0), Ŝ (0) ≥ S (z, 0),∀z ∈ R, (4.21)

we know that the solution (R̂, Ŝ )(t) of (4.20) is an upper solution of system (4.18).
Next, for the convergence of (R, S )(z, t), it is sufficient to prove that (R̂, Ŝ )(t) converges to (0, 0)

as t tends to ∞. A direct calculation shows that the eigenvalues λ̂1 and λ̂2 of the Jacobian matrix of
system (4.20) at the fixed point (0, 0) are less than zero. Therefore, (0, 0) is a stable node. From the
phase plane analysis, any manifold in R̂Ŝ -space for any initial value (R̂, Ŝ )(0) in region [0, µ

σ
] × [0, 1]

converges to the origin (0, 0). Then, as t → ∞, we define

(R̂, Ŝ ) = k̂1(Ĉ1, Ĉ2)eλ̂1t (4.22)

with k̂1 > 0 and (Ĉ1, Ĉ2)T is the eigenvector of the Jacobian matrix respect to λ̂1. We can choose k̂1

large enough and λ̃1 = min{η1,−λ̂1} to be used that we have

(R, S )(z0, t) ≤ k1(ζ1, ζ2)e−η1t ≤ k̂1(ζ1, ζ2)e−λ̃1t (4.23)

at the boundary z = z0. As a result, by comparison on the domain (−∞, z0] × [0,∞), see Lemma 3.2
in [36], for all (z, t) ∈ (−∞, z0] × R+,

(R, S )(z, t) ≤ k̂1(ζ1, ζ2)e−λ̃1t, (4.24)

then (R, S )(z, t) converges to (0, 0) for z ∈ (−∞, z0]. □

Lemma 4.2. Under the conditions given in Theorem 2, (U−,V−)(z, t) converges to (U,V)(z).

Proof. Let
X(z, t) = U(z) − U−(z, t),Y(z, t) = V(z) − V−(z, t),∀(z, t) ∈ R × R+ (4.25)

to satisfy the initial values

X(z, 0) = U(z) − U−0 (z),Y(z, 0) = V(z) − V−0 (z). (4.26)
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Similar discussion as lemma 4.1, ∀(z, t) ∈ R × R+, we have

(0, 0) ≤ (X,Y)(z, t) ≤
(
µ

σ
, 1

)
, (4.27)

and (
X
Y

)
t

= D
(

X
Y

)
zz

+C
(

X
Y

)
z

+ B1

(
X
Y

)
+

(
0

f (V− + Y) − f (V−)

)
, (4.28)

where the second-order matrices C and D are consistent with those in (3.3) and

B1 =

(
−σ µ

σ −µ

)
. (4.29)

Now we also consider the convergence for the following two cases with respect to z.
Case 1. (z > z0). By using the fact X < U and Y < V , we can verify that ∃η2 > 0 and k2 ≥

eβ(z−z0) max
z∈R

{
X(z,0)
ζ1
, Y(z,0)

ζ2

}
bring

(X,Y)(z, t) ≤ k2(ζ1, ζ2)e−η2t (4.30)

for all (z, t) ∈ R × R+.
Case 2. (z ≤ z0). Define (X̂, Ŷ)(z, t) as the solution of the following autonomous system(

X̂
Ŷ

)
t

=

(
−σ µ

σ −µ + f ′(1) + ε1

) (
X̂
Ŷ

)
+

(
0

h(Ŷ)

)
(4.31)

with the initial data
X̂(0) ≥ X(z, 0), Ŷ(0) ≥ Y(z, 0),∀z ∈ R. (4.32)

Then (X̂, Ŷ) is an upper solution to the system(
X
Y

)
t

= D
(

X
Y

)
zz

+C
(

X
Y

)
z

+

(
−σ µ

σ −µ

) (
X
Y

)
+

(
0

f (V) − f (V − Y)

)
. (4.33)

Phase plane analysis shows that for any initial values in region [0, µ
σ

]×[0, 1], (X̂, Ŷ)(t) always converges
to

(
µ

σ
, 1

)
. Similar to the proof of case 2 in Lemma 4.1, for some positive numbers k̂2 and λ̃2, we obtain

(X,Y)(z, t) ≤ k̂2(ζ1, ζ2)e−λ̂2t, ∀(z, t) ∈ (−∞, z0] × R+. (4.34)

□

Now we will use the squeezing theorem to obtain the conclusion of the Theorem (2).
By the inequalities (4.4), for any (z, t) ∈ R × R+, it gives

|X(z, t)| ≤ |U(z, t) − U(z)| ≤ |R(z, t)|,

|Y(z, t)| ≤ |V(z, t) − V(z)| ≤ |S (z, t)|.
(4.35)

From Lemmas 4.1 and 4.2 and the squeezing theorem, ∃k > 0, η > 0 so that ∀(z, t) ∈ R × R+,

|U(z, t) − U(z)| ≤ ke−ηt,

|V(z, t) − V(z)| ≤ ke−ηt.
(4.36)

To sum up, Theorem 2 is proved completely.
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