Research article

Mathematical exploration on control of bifurcation for a 3D predator-prey model with delay

  • Received: 11 September 2024 Revised: 09 October 2024 Accepted: 11 October 2024 Published: 21 October 2024
  • MSC : 34C23, 34K18, 37GK15, 39A11, 92B20

  • In this current paper, we developed a new predator-prey model accompanying delay based on the earlier works. By applying inequality strategies, fixed point theorem, and a suitable function, we got new necessary conditions for the existence, uniqueness, nonnegativeness, and boundedness of the solution to the developed delayed predator-prey model. The bifurcation behavior and stability nature of the defined delayed predator-prey model were investigated by using stability and bifurcation theory of delayed differential equations. We have modified the Hopf bifurcation's appearance time and stability domain by building two distinct hybrid delayed feedback controllers for the delayed predator-prey model. The time of Hopf bifurcation appearance and stability domain of the model were explored. Matlab experiment diagrams were given to support the learned important results. The derived outcomes in this paper were original and have significant theoretical implications for maintaining equilibrium between the densities of the three species.

    Citation: Yingyan Zhao, Changjin Xu, Yiya Xu, Jinting Lin, Yicheng Pang, Zixin Liu, Jianwei Shen. Mathematical exploration on control of bifurcation for a 3D predator-prey model with delay[J]. AIMS Mathematics, 2024, 9(11): 29883-29915. doi: 10.3934/math.20241445

    Related Papers:

  • In this current paper, we developed a new predator-prey model accompanying delay based on the earlier works. By applying inequality strategies, fixed point theorem, and a suitable function, we got new necessary conditions for the existence, uniqueness, nonnegativeness, and boundedness of the solution to the developed delayed predator-prey model. The bifurcation behavior and stability nature of the defined delayed predator-prey model were investigated by using stability and bifurcation theory of delayed differential equations. We have modified the Hopf bifurcation's appearance time and stability domain by building two distinct hybrid delayed feedback controllers for the delayed predator-prey model. The time of Hopf bifurcation appearance and stability domain of the model were explored. Matlab experiment diagrams were given to support the learned important results. The derived outcomes in this paper were original and have significant theoretical implications for maintaining equilibrium between the densities of the three species.



    加载中


    [1] Q. Din, N. Saleem, M. S. Shabbir, A class of discrete predator-prey interaction with bifurcation analysis and chaos control, Math. Model. Nat. Pheno., 15 (2020), 60. https://doi.org/10.1051/mmnp/2020042 doi: 10.1051/mmnp/2020042
    [2] C. F. Liu, S. J. Guo, Dynamics of a predator-prey system with nonlinear prey-taxis, Nonlinearity, 35 (2022), 4283. https://doi.org/10.1088/1361-6544/ac78bc doi: 10.1088/1361-6544/ac78bc
    [3] M. O. Al-Kaff, H. I. El-Metwally, A. A. Elsadany, E. M. Elabbasy, Exploring chaos and bifurcation in a discrete prey-predator based on coupled logistic map, Sci. Rep., 14 (2024), 16118. https://doi.org/10.1038/s41598-024-62439-8 doi: 10.1038/s41598-024-62439-8
    [4] E. D. Pita, M. V. O. Espinar, Predator-prey models: A review of some recent advances, Mathematics, 9 (2021), 1783. https://doi.org/10.3390/math9151783 doi: 10.3390/math9151783
    [5] S. Q. Zhang, S. L. Yuan, T. H. Zhang, A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments, Appl. Math. Comput., 413 (2022), 126598. https://doi.org/10.1016/j.amc.2021.126598 doi: 10.1016/j.amc.2021.126598
    [6] P. Mishra, B. Tiwari, Drivers of pattern formation in a predator-prey model with defense in fearful prey, Nonlinear Dynam., 105 (2021), 2811–2838. https://doi.org/10.1007/s11071-021-06719-2 doi: 10.1007/s11071-021-06719-2
    [7] H. Y. Zhang, T. S. Huang, L. M. Dai, Nonlinear dynamic analysis and characteristics diagnosis of seasonally perturbed predator-prey systems, Commun. Nonlinear Sci., 22 (2015), 407–419. https://doi.org/10.1016/j.cnsns.2014.08.028 doi: 10.1016/j.cnsns.2014.08.028
    [8] Q. Din, Stability, bifurcation analysis and chaos control for a predator-prey system, J. Vib. Control, 25 (2018), 612–626. https://doi.org/10.1177/1077546318790871 doi: 10.1177/1077546318790871
    [9] P. Panja, S. Gayen, T. Kar, D. K. Jana, Complex dynamics of a three species predator-prey model with two nonlinearly competing species, Results Control Optim., 8 (2022), 100153. https://doi.org/10.1016/j.rico.2022.100153 doi: 10.1016/j.rico.2022.100153
    [10] S. Hsu, S. Ruan, T. Yang, Analysis of three species Lotka-Volterra food web models with omnivory, J. Math. Anal. Appl., 426 (2015), 659–687. https://doi.org/10.1016/j.jmaa.2015.01.035 doi: 10.1016/j.jmaa.2015.01.035
    [11] G. Bunin, Ecological communities with Lotka-Volterra dynamics, Phys. Rev. E, 95 (2017), 042414. https://doi.org/10.1103/PhysRevE.95.042414 doi: 10.1103/PhysRevE.95.042414
    [12] L. F. Wu, S. F. Liu, Y. N. Wang, Grey Lotka-Volterra model and its application, Technol. Forecast. Soc., 79 (2012), 1720–1730. https://doi.org/10.1016/j.techfore.2012.04.020 doi: 10.1016/j.techfore.2012.04.020
    [13] P. H. Kloppers, J. C. Greeff, Lotka-Volterra model parameter estimation using experiential data, Appl. Math. Comput., 224 (2013), 817–825. https://doi.org/10.1016/j.amc.2013.08.093 doi: 10.1016/j.amc.2013.08.093
    [14] A. Marasco, A. Picucci, A. Romano, Market share dynamics using Lotka-Volterra models, Technol. Forecast. Soc., 105 (2016), 49–62. https://doi.org/10.1016/j.techfore.2016.01.017 doi: 10.1016/j.techfore.2016.01.017
    [15] M. X. Wang, J. F. Zhao, Free boundary problems for a Lotka-Volterra competition system, J. Dyn. Differ. Equ., 26 (2014), 655–672. https://doi.org/10.1007/s10884-014-9363-4 doi: 10.1007/s10884-014-9363-4
    [16] P. Zhou, On a Lotka-Volterra competition system: Diffusion vs advection, Calc. Var. Partial. Dif., 55 (2016), 137. https://doi.org/10.1007/s00526-016-1082-8 doi: 10.1007/s00526-016-1082-8
    [17] R. Cherniha, V. Davydovych, Construction and application of exact solutions of the diffusive Lotka-Volterra system: A review and new results, Commun. Nonlinear Sci., 113 (2022), 106579. https://doi.org/10.1016/j.cnsns.2022.106579 doi: 10.1016/j.cnsns.2022.106579
    [18] P. Panja, S. Gayen, T. Kar, D. K. Jana, Complex dynamics of a three species predator-prey model with two nonlinearly competing species, Results Control Optim., 8 (2022), 100153. https://doi.org/10.1016/j.rico.2022.100153 doi: 10.1016/j.rico.2022.100153
    [19] F. Eizakshiri, P. W. Chan, M. W. Emsley, Where is intentionality in studying project delays? Int. J. Manag. Proj. Bus., 8 (2015), 349–367. https://doi.org/10.1108/IJMPB-05-2014-0048 doi: 10.1108/IJMPB-05-2014-0048
    [20] Z. W. Liang, X. Y. Meng, Stability and Hopf bifurcation of a multiple delayed predator-prey system with fear effect, prey refuge and Crowley Martin function, Chaos Soliton. Fract., 175 (2023), 113955. https://doi.org/10.1016/j.chaos.2023.113955 doi: 10.1016/j.chaos.2023.113955
    [21] X. Z. Feng, X. Liu, C. Sun, Y. L. Jiang, Stability and Hopf bifurcation of a modified Leslie-Gower predator-prey model with Smith growth rate and B-D functional response, Chaos Soliton. Fract., 174 (2023), 113794. https://doi.org/10.1016/j.chaos.2023.113794 doi: 10.1016/j.chaos.2023.113794
    [22] Z. S. Cheng, J. D. Cao, Hybrid control of Hopf bifurcation in complex networks with delays, Neurocomputing, 131 (2014), 164–170. https://doi.org/10.1016/j.neucom.2013.10.028 doi: 10.1016/j.neucom.2013.10.028
    [23] C. X. Lei, H. W. Li, Y. J. Zhao, Dynamical behavior of a reaction-diffusion SEIR epidemic model with mass action infection mechanism in a heterogeneous environment, Discrete Cont. Dyn.-B, 29 (2024), 3163–3198. https://doi.org/10.3934/dcdsb.2023216 doi: 10.3934/dcdsb.2023216
    [24] X. R. Tong, H. J. Jiang, X. Y. Chen, J. R. Li, Z. Cao, Deterministic and stochastic evolution of rumor propagation model with media coverage and class-age-dependent education, Math. Method. Appl. Sci., 46 (2023), 7125–7139. https://doi.org/10.1002/mma.8959 doi: 10.1002/mma.8959
    [25] M. M. Yu, S. C. Wu, X. D. Li, Exponential stabilization of nonlinear systems under saturated control involving impulse correction, Nonlinear Anal.-Hybri., 48 (2023), 101335. https://doi.org/10.1016/j.nahs.2023.101335 doi: 10.1016/j.nahs.2023.101335
    [26] Y. C. Xu, Y. Liu, Q. H. Ruan, J. A. Lou, Data-driven optimal tracking control of switched linear systems, Nonlinear Anal.-Hybri., 49 (2023), 101355. https://doi.org/10.1016/j.nahs.2023.101355 doi: 10.1016/j.nahs.2023.101355
    [27] Y. L. Jin, D. M. Zhang, N. N. Wang, D. M. Zhu, Bifurcations of twisted fine heteroclinic loop for high-dimensional systems, J. Appl. Anal. Comput., 13 (2023), 2906–2921. https://doi.org/10.11948/20230052 doi: 10.11948/20230052
    [28] C. J. Xu, J. T. Lin, Y. Y. Zhao, Q. Y. Cui, W. Ou, New results on bifurcation for fractional-order octonion-valued neural networks involving delays, Network-Comp. Neural, 2024. https://doi.org/10.1080/0954898X.2024.2332662 doi: 10.1080/0954898X.2024.2332662
    [29] C. J. Xu, D. Mu, Y. L. Pan, C. Aouiti, Y. C. Pang, L. Y. Yao, Probing into bifurcation for fractional-order BAM neural networks concerning multiple time delays, J. Comput. Sci., 62 (2022), 101701. https://doi.org/10.1016/j.jocs.2022.101701 doi: 10.1016/j.jocs.2022.101701
    [30] C. J. Xu, Y. Y. Zhao, J. T. Lin, Y. C. Pang, Z. X. Liu, Bifurcation investigation and control scheme of fractional neural networks owning multiple delays, Comput. Appl. Math., 43 (2024), 186. https://doi.org/10.1007/s40314-024-02718-2 doi: 10.1007/s40314-024-02718-2
    [31] T. Williams, Assessing extension of time delays on major projects, Int. J. Prod. Manag., 21 (2003), 19–26. https://doi.org/10.1016/S0263-7863(01)00060-6 doi: 10.1016/S0263-7863(01)00060-6
    [32] M. Xiao, D. W. C. Ho, J. Cao, Time-delayed feedback control of dynamical small-world networks at Hopf bifurcation, Nonlinear Dynam., 58 (2009), 319–344. https://doi.org/10.1007/s11071-009-9485-0 doi: 10.1007/s11071-009-9485-0
    [33] K. Mokni, M. C. Chaoui, B. Mondal, U. Ghosh, Rich dynamics of a discrete two dimensional predator-prey model using the NSFD scheme, Math. Comput. Simulat., 225 (2024), 992–1018. https://doi.org/10.1016/j.matcom.2023.09.024 doi: 10.1016/j.matcom.2023.09.024
    [34] E. Balci, Predation fear and its carry-over effect in a fractional order prey-predator model with prey refuge, Chaos Soliton. Fract., 175 (2023), 114016. https://doi.org/10.1016/j.chaos.2023.114016 doi: 10.1016/j.chaos.2023.114016
    [35] M. R. Xu, S. Liu, Y. Lou, Persistence and extinction in the anti-symmetric Lotka-Volterra systems, J. Differ. Equations, 387 (2024), 299–323. https://doi.org/10.1016/j.jde.2023.12.032 doi: 10.1016/j.jde.2023.12.032
    [36] Y. L. Tang, F. Li, Multiple stable states for a class of predator-prey systems with two harvesting rates, J. Appl. Anal. Comput., 14 (2024), 506–514. https://doi.org/10.11948/20230295 doi: 10.11948/20230295
    [37] V. K. Shukla, M. C. Joshi, P. K. Mishra, C. J. Xu, Adaptive fixed-time difference synchronization for different classes of chaotic dynamical systems, Phys. Scripta, 99 (2024), 095264. https://doi.org/10.1088/1402-4896/ad6ec4 doi: 10.1088/1402-4896/ad6ec4
    [38] C. J. Xu, W. Ou, Q. Y. Cui, Y. C. Pang, M. X. Liao, J. W. Shen, et al., Theoretical exploration and controller design of bifurcation in a plankton population dynamical system accompanying delay, Discrete Cont. Dyn.-S, 2024. https://doi.org/10.3934/dcdss.2024036 doi: 10.3934/dcdss.2024036
    [39] C. J. Xu, M. Farman, A. Shehzad, Analysis and chaotic behavior of a fish farming model with singular and non-singular kernel, Int. J. Biomath., 2024. https://doi.org/10.1142/S179352452350105X doi: 10.1142/S179352452350105X
    [40] C. J. Xu, M. X. Liao, M. Farman, A. Shehzad, Hydrogenolysis of glycerol by heterogeneous catalysis: A fractional order kinetic model with analysis, MATCH Commun. Math. Co., 91 (2024), 635–664. https://doi.org/10.46793/match.91-3.635X doi: 10.46793/match.91-3.635X
    [41] M. Z. Baber, M. W. Yasin, C. J. Xu, N. Ahmed, M. S. Iqbal, Numerical and analytical study for the stochastic spatial dependent prey-predator dynamical system, J. Comput. Nonlinear Dyn., 19 (2024), 101003. https://doi.org/10.1115/1.4066038 doi: 10.1115/1.4066038
    [42] C. J. Xu, M. Farman, A. Shehzad, K. S. Nisar, Modeling and Ulam-Hyers stability analysis of oleic acid epoxidation by using a fractional order kinetic model, Math. Methed. Appl. Sci., 2024. https://doi.org/10.1002/mma.10510 doi: 10.1002/mma.10510
    [43] Y. Wang, Positive solutions for fractional differential equation involving the Riemann-Stieltjes integral conditions with two parameters, J. Nonlinear Sci. Appl., 9 (2016), 5733–5740. https://doi.org/10.22436/jnsa.009.11.02 doi: 10.22436/jnsa.009.11.02
    [44] Y. Wang, L. S. Liu, X. G. Zhang, Y. H. Wu, Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection, Appl. Math. Comput., 258 (2015), 312–324. https://doi.org/10.1016/j.amc.2015.01.080 doi: 10.1016/j.amc.2015.01.080
    [45] Y. Q. Yang, Q. W. Qi, J. Y. Hu, J. S. Dai, C. D. Yang, Adaptive fault-tolerant control for consensus of nonlinear fractional-order multi-agent systems with diffusion, Fractal Fract., 7 (2023), 760. https://doi.org/10.3390/fractalfract7100760 doi: 10.3390/fractalfract7100760
    [46] T. Y. Jia, X. Y. Chen, L. P. He, F. Zhao, J. L. Qiu, Finite-time synchronization of uncertain fractional-order delayed memristive neural networks via adaptive slidingmode control and its application, Fractal Fract., 6 (2022), 502. https://doi.org/10.3390/fractalfract6090502 doi: 10.3390/fractalfract6090502
    [47] Y. G. Zhao, Y. B. Sun, Z. Liu, Y. L. Wang, Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type, AIMS Math., 5 (2020), 557–567. https://doi.org/10.3934/math.2020037 doi: 10.3934/math.2020037
    [48] L. M. Guo, Y. Wang, H. M. Liu, C. Li, J. B. Zhao, H. L. Chu, On iterative positive solutions for a class of singular infinite-point p-Laplacian fractional differential equations with singular source terms, J. Appl. Anal. Comput., 13 (2023), 2827–2842. https://doi.org/10.11948/20230008 doi: 10.11948/20230008
    [49] Y. L. Jin, D. M. Zhang, N. N. Wang, D. M. Zhu, Bifurcations of twisted fine heteroclinic loop for high-dimensional systems, J. Appl. Anal. Comput., 13 (2023), 2906–2921. https://doi.org/10.11948/20230052 doi: 10.11948/20230052
    [50] R. T. Xing, M. Xiao, Y. Z. Zhang, J. L. Qiu, Stability and Hopf bifurcation analysis of an (n plus m)-neuron double-ring neural network model with multiple time delays, J. Syst. Sci. Complex., 35 (2022), 159–178. https://doi.org/10.1007/s11424-021-0108-2 doi: 10.1007/s11424-021-0108-2
    [51] X. W. Jiang, X. Y. Chen, M. Chi, J. Chen, On Hopf bifurcation and control for a delay systems, Appl. Math. Comput., 370 (2020), 124906. https://doi.org/10.1016/j.amc.2019.124906 doi: 10.1016/j.amc.2019.124906
    [52] Y. M. Zi, Y. Wang, Positive solutions for Caputo fractional differential system with coupled boundary conditions, Adv. Differential Equ., 2019 (2019), 80. https://doi.org/10.1186/s13662-019-2016-5 doi: 10.1186/s13662-019-2016-5
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(312) PDF downloads(73) Cited by(0)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog