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1. Introduction

It is widely accepted that the delayed dynamical model is an important tool for answering many
issues in biology. Numerous academics focus extensively on the development of diverse predator-
prey models to elucidate the dynamics and internal structure within biological populations. We can
successfully regulate the concentrations of predators and preys in the natural world by investigating
the various dynamical characteristics of predator-prey models. Numerous studies on predator-prey
models have been submitted and released in recent years, and several outstanding studies have been
discussed. For example, Din et al. [1] studied the discrete predator-prey interactions with chaos
control and bifurcation analysis. Liu and Guo [2] examined the dynamics of a predator-prey system
with nonlinear prey-taxis, using the Lyapunov-Schmidt reduction approach, the fold-Hopf singularity,
Hopf bifurcation, and steady state bifurcation are examined in depth. Al-Kaff et al. [3] investigated
bifurcation and chaos in a discrete predator-prey system using a linked logistic map, a wide range of
the system’s behavior is thoroughly examined in the study. Pita et al. [4] investigated a review of some
recent advances in predator-prey models. For more extensive investigations, see [5-9].

In particular, Lotka-Volterra models are vital predator-prey models in biology. They play an
important role in describing the correlation between predators and prey. During the past decades,
many works on this topic have been reported. For example, Hsu et al. [10] studied three different
species of omnivorous Lotka-Volterra food web models. Bunin [11] studied the Lotka-Volterra model
for ecological communities exhibiting symmetry and connected it to other well-known models. Wu
et al. [12] investigated the Grey Lotka-Volterra model and its application, effectively analyzing the
link between the two variables and forecasting their values using the gray Lotka-Volterra model.
Kloppers et al. [13] estimated the parameters of the Lotka-Volterra model from empirical data.
Marasco et al. [14] found the development of market share dynamics through the application of Lotka-
Volterra models, and Wang et al. [15] examined the problems with free boundaries in a Lotka-Volterra
competition system. Zhou [16] investigated a two-species Lotka-Volterra competition system in one-
dimensional advective environments. Cherniha et al. [17] studied a review and new findings regarding
the construction and application of exact solutions to the diffusive Lotka-Volterra system.

In 2022, Prabir et al. [18] suggested the subsequent Lotka-Volterra mutualistic symbiotic
relationship:
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where U, and U, indicate the density of two logistically increasing competing species, U3 represents
the density of a predatory species of U», ry, r, are the natural rates of growth for species U; and U5,
K, K, are the carrying capacity of species U; and U, respectively, a,, @, represent the fight between
two species U; and U,, 03 is the commensal coefficient of U over U5 species, a is the frequency at
which Uj species attack U, species, p is the refuge rate of U, species, c refers to the rate of conservation
of U, species, b is the steady value for half saturation for the Holling type II function, and e is the rate
of extinction for species Us. One might refer to [18] for a more precise explanation of the meaning of
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system (1.1).
In order to make the suggested mathematical model nondimensional, we have now added a few

variables and constants as t = rT,u; = %,uz = %,M3 = %,712 = %,7 = ‘Slzﬁ,r = %,721 =
"211(5’1:[1(7"}2 rel’v3_£
Then model (1.1) can be simplified to the following form
du, (t
LD w01 = () = Y1) + ya (),
dux(1) 2 (1 = pux(us(1)
= rup()(1 — up(t) — 1) — ,
G = e =@ = i) - (1.2)
dus(t 1- t
us (1) _ Y —_— v3(l = plus (1) ,
dt vi + (1 = pus(t)

with initial conditions u;(0) > 0, u>(0) > 0, u3(0) > 0.

In this instance we want to call your attention to the truth that the evolution of species frequently
depends on both historical and present times; hence, delays must be incorporated into biological
models. Notice that the development of the density of two logistically increasing competing species U
and O, rely on not only the current time but also the past time. In other words, the development of the
density of two logistically increasing competing species U; and U, shall have feedback delays. Based
on this idea, we assume that there are two self-feedback delays in model (1.2): One is the self-feedback
delay from the first species u; to the first species u;, and the other the self-feedback delay from the first
species u, to the first species u,. The points that follow delayed Lotka-Volterra commercially available
symbiosis system may then be loosely formulated:

d

”f) (D1 = (1 = 0) = y1o12() + yus (Vs
diy(t) _ (1= Pua(tus(®)

20 = )1 = 1= ) = o) — R, (13)
dus(t) us(0) (—v N v3(l — pux(?)

a Ty -puwd)

where 8 > 0 is a time delay and all the parameters vy, ¥, 1, ¥21, V1, V2, V3 are positive constants. The
initial conditions of system (1.3) are given by u;(s) = ¢;(s) > 0,i = 1,2,3,s € [-0,0] and ¢;(s) €
C([-6,0],R"),i=1,2,3.

Mathematically speaking, delays play a key role in determining how different differential systems
behave dynamically [19-21]. Delays can lead to a variety of consequences, including changes in
stability, the formation of bifurcations, and the start of chaotic behavior [22-24]. During the past
decades, many authors deal with this topic, see [25-27]. Specifically, the dynamic phenomena
of delays-induced Hopf bifurcation is quite significant [28-30]. From a biological perspective,
delay-induced Hopf bifurcation nicely captures the equilibrium between densities of different living
populations [31]. We contend that in order to understand the dynamics of interactions across various
biological populations, it is critical to investigate delay-induced Hopf bifurcation in a variety of
biological models. Motivated by this idea, we will concentrate on the Hopf bifurcation and its
bifurcation control mechanisms. Specifically, we will address three critical questions: (1) Assess
the distinctive features of the solution to system (1.3), including its nonnegativity, existence and
uniqueness, and boundedness. (2) Examine the system’s stability problem and the formation of the
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Hopf bifurcation phenomena (1.3). (3) Build both controllers for adjusting the range of stability and
the generation time of the Hopf bifurcation in system (1.3).

The following is an introduction of the study’s primary luminous spot: (i) A completely new delay-
independent bifurcation and stability criterion for system (1.3) is established based on the earlier
studies. (ii) Using separate controllers, the realm of stability and the time of Hopf bifurcation in
system (1.3) may be regulated well. (iii) This study examines how delay affects Hopf bifurcation and
the stability of first and second species densities in system (1.3).

The stated arrangement of the article is as follows. The “Feature of solution” section discusses
the unique characteristics of system (1.3), such as boundedness, nonnegativeness, existence, and
uniqueness. The “Bifurcation analysis” section discusses the bifurcation phenomena and the system’s
stability (1.3). The “Bifurcation domination using extended hybrid controller I’ section centers around
the control issue associated with bifurcation phenomena for system (1.3) by formulating a plausible
hybrid delayed feedback controller that involves parameter perturbation is accompanied by latency
and state feedback. “Bifurcation domination using extended hybrid controller II”” section addresses
the control challenge of the bifurcation phenomena in system (1.3). Creating a suitable hybrid
delayed feedback controller with parameter perturbation for delay and state feedback. The “Software
experiments” section provides Matlab software simulation results to assess the veracity of the obtained
main results. “Conclusions” concludes this study concisely.

2. Feature of solution

This section will examine the characteristics of the solution to system (1.3), such as its existence
and uniqueness, nonnegativeness, and boundedness. To do this, we will employ fixed point theory,
inequality methods, and the design of an appropriate function.

Theorem 2.1. Let A = {(uy, uz, u3) € R® : max{|uy|, |uzl, |us]} < M}, where M > 0 denotes a constant.
For every (uyo, uxg, uz0) € A, system (1.3) under the initial value (uyq, usg, Uzg) owns a unique solution
U= (M],MQ,Mg,) € A.

Proof. Set

W) = (fiU), 0), f3(U)), (2.1)
where
[WU) = u (O — uy(t — ) — yius(t)) + yur (Dus (1),

_ (= P
JU) = ru)(1 = et = 6) = oy ) = = S 02
vs(1 = pls(t)

vi+ (1 -pu@®)”

HWU) = uz()(—v2 +
For arbitrary U, U € A, one gains

1A - £
=|fitw) = fi@| + | fo(w) = @] + | f3(u) — f3(@)]

= |[M1 — wuy (t — ) — yougus + yujus]

= |a = @it (e = 0) = o5 + 717!117!3:”
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(1 = pusus
+ — t—0)— Ty - ————
e = et = 0) = Py =
i o L (1 = p)iyiis
_ — t—0) - Ty = ———————
[ruz riyity(t — 6) — ryy ity vi + (1 = p)ii
- 1 - piit
v+ (= ps vi+ (1 = pity

<luy — | + luyuy (t = 6) — ity (2 = O)| + y12 |M1M% - ﬁ1ﬁ§|
+yluiuz — wyitz| + rlug — ito| + r|uus(t — 6) — ity (1 — 6)]
1- 1 — payu
+ ryal |u%u2 _ ﬁ%ﬁ2| +(1-p) ( Pusu3 _ ( p)”2u3_
vit+(l=-puy vi+(1-piy
U3 U lt3
vit+(I=puy vi+(-piy
<lup — | + |uguy (£ = 6) — gy (t = 0) + ity (t — 0) — iyiay (t — 0)|

+ o lus — i3] + v3(1 — p)

+ Y12 |u1u§ — Wus + s — ﬁlﬁ§| + v |ujus — yus + juz — i its)

+ 1|y — | + r|uaur(t — 0) — lpuy(t — 0) + oy (t — 6) — ity (t — 0)|

+ rya |u%u2 - ﬁ%uz + ﬁ%uz - ﬁfﬁz|

wuz[vy + (1 = pitx] — itz [vy + (1 — plus]
vi + (1 = pus]lvy + (1 = p)its]

<luy =i + Mluy —itg] + Mui(t = 0) — ity (t = O)| + yiM* |uy — iy

+(3+ DI -p)

+ 2y M |uy — iiy| + yM |uy — | + yM |us — i3] + rluy — ita| + rM |uy — it
+ M |us(t — 6) — il (t — O)| + 2ryas M? luy — ] + ryas M? |lua — it

vi(vs+1) _ vi(vs+1) _ _
————uy — |+ ———=|uz — s+ (v3+ 1 -
Y luy — its] (=M lus — i3] + (v3 + 1) |uz — it
= (1 +2M + y,M? + yM + 2ry, i M) [uy — ity| + Qy1oM? + v+ rM + rM
vi(vz+1) _ vi(v3+1) _
+ Iy M? + ————) |y — ity| + (YM + ———— +v3 + 1) |uz —
ryai (l—p)M)|u2 | + (y (- p)M V3 ) luz — i3]
=0y |luy — | + oy luy —ilp| + o3 |uz — i3]
< L(luy —ity| + |up — ito| + |uz — i3]), (2.3)
where
o =1 +2M+’)/]2M2+’)/M+21”’)/2]M2,
oy =2y M* +r+rM +rM +r M2+—V1(v3+1)
2 Y12 | Y21 (1 _ p)M ’ (24)
+
0'3:)/M+M+v3+1.
(I-pM
Let
L= maX{0'1,0'2,0'3}. (25)
Then it follows from (2.3) that
IlfO) - fOI < LIIU - Ul (2.6)

Consequently, f(U) adheres to the Lipschitz condition for U. By applying the fixed point theorem, it’s
possible to infer with ease that Theorem 2.1 is right.
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Theorem 2.2. Each solution to system (1.3) beginning with R® maintains a nonnegative value.

Proof. Considering the initial equation of system (1.3), it’s possible to achieve

du1

i w1 = uy(t = 0) — you5] + yuyus, (2.7)
then
u—l = [1 - ul(t - 0) —Yi2uU; + ’)/I/t3]dt, (28)
which leads to
! dl/t !
f — = f [1 = 1 (s = 6) = yiou3 + yus]ds, (2.9)
0o U 0
then one gets
t !
ui(0) 0
thus
!
u(t) = uy(0) exp{f [1—u(s—6)— 712u§ + yuszlds} > 0. (2.11)
0
In the same way, we know
A 1 _
u(t) = up(0) exp {f [r — rus(s — ) — ry21u§ — w]ds} > 0. (2.12)
0 vi+ (1 -pu
' v3(1 = pluy
us(t) = u3(0) exp f [-vg + ——————]ds; > 0. (2.13)
0 vi+ (1 -pu

Therefore, the validity of Theorem 2.2 is affirmed.
Theorem 2.3. Each solution to system (1.3), starting with R3, is invariably restricted.

Proof. From the second equation of system (1.3), we have

du, ) (1 = plusus
— = 1 —u(t—06)— - 2.14
7 rup(1 — us(t — 0) — yayuy) o (= o (2.14)
Then J
% < ru. (2.15)
Integrating from (¢ — ) to ¢ on both sides of the Eq (2.15) leads to
t d !
= < f rdt. (2.16)
-9 U2 -0
We get
us(t) < up(t — 6)e’, (2.17)
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then
ur(t — 0) > ur(t)e™, (2.18)
from (2.14), we can get
dl/l2 —r0
I < ruy()(1 — up(t — 0)) < ruy()(1 — up(He™™). (2.19)
So 4
% < w0)(r - re”" (1)) (2.20)
Hence
(1) < e, (2.21)
Now, we define the following function
1
Wi =u, + —us. (2.22)
V3
Then
dW] _ dI/tg + 1 du3
dt — dt v dt
(I = plugus vi(1 = p)uy
= 1 — r— 9 — 2y_ . PP —(— _—
rua(l = i ) = Yaity) vi+ - pu, & vi+ (1 -pu
Vou
= rup(l = ua(t = ) = you) = ==
3
< rwll —uy(r — )] - 28
V3
1
= =V lup + —uz |+ vous + rup[1 — uy(t — 6)]
V3
1
< v lup+ —uz |+ (o + Nuy
V3
1 ro
< —vlup+ —us|+ vy +r)e
V3
= —nuWi@®) + (2 + r)e”. (2.23)
Thus o
_I_ A
Wy < 20D (2.24)
V2
Next we define another function W, as follows
1
Wr =uy + uy + —us. (225)
V3

Then, we get

W, dw | duy 1 dus
dt dt dt vy dt

AIMS Mathematics
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[ul(l —uy(t — 0) — ypu3) + 7”1143]

(1 = p)usus
+ 1=t = 6) = yay) = =
rup(l — up(t — 0) — yauy) vi+ (= pu
N P Ll VT ]
V3 v + (1= pluy

= [ul(l —uy(t—0) — yu3) + 7’”1”3]
+ [ul(l —uy(t—0) — yu3) + 7’”1”3]

< —vlug +us + —us |+ vouy + voup + uqg[1 — ui(t — 0)]
V3
+yuyus + run[1 — up(t — 6) — yyu]
1
= —vluy +uy+ —uz| - y21ru2uf + (v + 1 +yuz)u; + (vo + ruy
V3
1 2
< =wlug +up + —us| = yaruguy + (va + 1+ yuz)uy + (va + rjus
V3
1 2
< —wvlu+u +—us —’}/217'Mll/t1 + (V2 +1+ ’)/Mz)l/ll + (Vz + }")Ml
V3
1
< —wlup+u+ —us|+ 0, (2.26)
V3
where
Ml — erH,
M, = vy + r)e’a’
V2
0= —4y 1 rMy*(va + 1) — (v + 1 + yM,)’
—4yrM, '
Stemming from Eq (2.26), it is deduced that
Wi(t) < g (2.27)
Va
By Eq (2.28), we obtain
WH(t) — 2, when ¢ — oo, (2.28)

V2

Consequently, every solution to the system (1.3) is consistently limited.

3. Bifurcation analysis

This part delves into examining the bifurcation and stability aspects of model (1.3). Initially,
our assumption is that E(uy., Uy, U3«) represents the balance point in model (1.3); subsequently,
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U1, Usy, Uss adhere to this stipulation:

2
Uil = ury —yiou5, 1 + yuruze =0,

3 B 29 (1- P)MQ*M.%* _
rug,[1 — gy — yaruy, | vi+ (L= Pliiay 0, 3.1)
(1 = P)MZ*

U3y | —V =
* ? vi+ (1 = puoy

Let
ur(t) = u(t) — ur,
iy (1) = ux(t) — uoy, (3.2)
u3(t) = uz(t) — Uzy.

Substituting system (3.2) into system (1.3), we achieve the linear configuration of model (1.3) at
E(ui4, usy, us,) (denote i1y as uy, ity as u,,iiz as us)

d
ﬂ = biuy + brup + b3uz + b4bt1(t —0),

jt

% = bsuy + bgity + b7uz + bgur(t — 0), (33)
i
d

I = bouy + byous,

where
by=1-up, — )’12”%* — YU3x,
b, = —2)’12M1*M2*,
b3 = _yul*a
b4 = —Ulx,
bs = =2rys Ui,z
. 2 (1 = plus, (1- p)2u2*1/l3*
be =1 — rug, — rysuy, — + x
vi+ (1 =plas  [vi + (1 = p)uy] (3.4)
b = (1 = pluas
7 — = )
vi+ (1 = puss
bg = _7"”2*,
be = vi(l — plusse v3(l — p)uzsitss
9 — - s
vi+ (1= pluas v + (1 = pluss
v3(l = pluy,
10 = — V7.

B vi+ (1 = pusy

The characteristic Eq (3.3) of the system owns the following expressions:

A- b] — b4€_/w —b2 —b3
det —b5 A- b6 - bge_/w —b7 = 0, (35)
0 —bg A- bl()
which leads to
LB+ +cd+ 3+ (e +csd+cg)e ™™ + (74 + cg)e ™ = 0, (3.6)
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where

¢y = —by — bg — by,

¢y = bibg + bi1byy — bybs + bgbiy — biby,
c3 = bibibg — bbby + bybsbio — b3bsby,
¢4 = —by — by,

Cs = blbg + b4b6 + b4b10 + bgblo, (37)
Ce = bab7bg — bbb\ — bsbsb,
c7 = bybg,
Cg = —b4bgb10.
If 6 = 0, then Eq (3.6) becomes
A+ (e + e+ (cy + 5+ c7)A+ (¢c3+ ¢co + ¢3) = 0. (3.8)

If
C1+C4 > 0,
(ﬂ]) C3+C6+C8>0,
(c1 + cy)(cr + ¢5+¢7) > ¢3 + 6 + C3,

is fulfilled, then the three roots 4, A,, A3 of Eq (3.8) have negative real parts. Thus, the equilibrium
point E(uy4, Uz, Usy) of system (1.3) with 8 = 0 is locally asymptotically stable.

Assume that A = ig is the root of Eq (3.6), then Eq (3.6) becomes

— c4€ + csie + co + (&% — €16° — crie + c3)e + (cqig + cg)e ™ = 0. 3.9)

It follows from (3.9) that

F | sin(g) + F, cos(g0) = Fj, (3.10)
F, sin(g0) + F5cos(g0) = Fg, '
where
F, = e+ 8218,
Fr=—c&+ 82,
F3 = C482 — Ceq,
A1
Fy=—ci&" + g, .11
Fs=-&+ 848,
F(, = —Cs5€&,
and
81 = C7 — C,
82 = C3 tCg, (3.12)
83 = €3 — Cg, '
g4 =0Cy + 7.
It follows from (3.10) that
. FyF¢ — F3Fs
R oYy oy
Fzsft _17111;56 (3.13)
cos(e)) = ———.
FFy—FFs

AIMS Mathematics Volume 9, Issue 11, 29883-29915.
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Because of sin’(&6) + cos?(g6) = 1, we can get

2 2
FyFe — F5F F3F,—F\F
2l'g LR I R Fol _ (3.14)
FyFy— FFs FFy— FFs
So,
FiF: + FyF: + FiF; + F3F; — F1F: — F5F;
—2F,F3FsFg — 2F | F3FsFg + 2F  FoF4F5 = 0. (3.15)
Using (3.11) and (3.15), we know
— &2+ D" + Dye® + D3e® + Dyt + Dse* + D = 0. (3.16)
Therefore, the results can be obtained as follows:
812 — D1810 — D288 - D386 — D484 — D582 - D6 = 0, (317)
where
D, = ci —284—2g1 — 2cf,
D; = =2¢384 — 2¢4c6 + €3 + €1¢; — g5 + 48184
- g% - c‘l‘ + 26%g4 +2c183 +2c182 — 2c%g1,
D5 = ¢85 +4cacoga + cg + ik + 2c381 — 2¢1¢583 — 2¢7¢ace — 2818
+ 28784 + 2¢183 + 2¢182 — 2¢1¢4C584 — 2€4C580 — 2¢1C4C581 + 2040583
—2¢18384 +2(g2 — c181)(—C184 — g3) + 218182, (3.18)
D, = —2c4cégi - 2c§g4 — 2c]c§g2 + cﬁg% + cig% +4cichce83 + c?cé - g%g;‘.: ’
— 185 — 4018283 — €185 + 2¢584(C1C6 + €a82) + 2¢5C682 + 2¢1C5C681
+ 2c¢583(cag1 — o) +28384(82 — c181) + 28182(—C184 — &3),
Ds = cgg; + €385 — 204685 — 2¢1C483 + 218285 + 2¢18383 — 2C5C68284
—2¢5068183 + 281828384
Dg = co83 — 8585
Let
%1(8) = 812 - D]Slo - D288 - D386 - 1)484 - D582 - D6. (319)

Assume that
(A) lcol > 182l

By virtue of (A), we know R(0) = —(cz¢3 — g583) < 0, and since lim R,(g) > 0, then we will

know Eq (3.17) has at least one positive real root. Therefore Eq (3.6) has at least one pair of pure
roots. Without loss of generality, we can assume that Eq (3.17) has twelve positive real roots (say,

g,j=1,2,3,---,12). Relying on (3.12), we know

1 FXF* _ Frp*
[arms (M

o = —
I gy F}Ff - F{F}

) + 2nn|, (3.20)
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where j=1,2,---,12;n=0,1,2,--;

* 3
Fi =g+ gi1¢),
* 2
Fy = —ci&; + g,
* 2
F; = C4&; — Co, 391
F* _ 2 ( . )
* _ 3
Fi = —&; + €,
Fg = —Cs¢&;.

Assume 6y = mingj— ... 12:0=0,1,2,.- }{95.”)} and suppose that when 6 = 6, Eq (3.6) has a pair of imaginary
roots +igy. Next we present the following assumption:

(A3) GirGar + G11Go > 0,

where
Gir = —2c1&9 sin(gpy) — (383 — ¢y — ¢7) cos(&pbp),

G]] = (—38(2) + Ccy — C7) Sil’l(&‘og()) + 2C180 COS(E()@()),
G = (—618(3) + c3&0 + C3&p) sin(gyby) + (—sg + czsg - C763) cos(ggbp),
Gy = (—83 + czsg + 0783) sin(goly) + (cleg — 380 + c3&g) cos(gpbp).

(3.22)

Lemma 3.1. Suppose that A(0) = €(0) + iex(0) is the root of Eq (3.6) at 8 = 6, such that €,(6y) = 0,
&6(0y) = &, then Re (fi—g) ' > 0.

0=0y,e=€9

Proof. By Eq (3.6), we can get

da da
(3/l2 +2ciA+ cz)ew@ + (/l3 + o 2+l + c3)et? (@0 + /l)

_,da o fdA da
+cqe *9@ —(c7d + cg)e™? (@9 + /1) + (2csd + cs)@ =0. (3.23)
It means that 1
di\ G @0
>l = -, 3.24
(d@) Gy A ( )
where
Gi1() = B2 +2c1A + )™ + cre7,
-0 3 2 A0 (325)
Gr(A) = (c7A + cg)de™™ — (A7 + c1A” + crd + ¢c3)de™.
Hence )
da\ Gi(1 GirGor + G1;G
Re l(—) ] = Re[ ! )] = (3.26)
do 0=00,e=¢9 G»(1) 0=09,e=59 Gy + Gy,
By the assumption (Aj3), we get
!
Rel||— > 0. (3.27)
o 6=0p,6=
=00,£=£&0

This concludes the proof. According to the preceding reasoning, the following result is simply deduced.

Theorem 3.1. Assume that (A;)—(A3) hold, then the equilibrium point E(u;, Uy, Uzx) of model (1.3)
holds a locally asymptotically stable state if 0 € [0, 6y) and model (1.3) generates Hopf bifurcations
around the equilibrium point E(uy4, Uy, U3s) When 6 = 6.
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4. Bifurcation domination using extended hybrid controller I

Motivated by the works of [30,32-34], we design the hybrid controller in Sections 4 and 5. In
fact, we add a perturbation by adjusting the rate of change of population and then we can check
the controllability via theoretical analysis and computer simulations. In this part, we will look at
the Hopf bifurcation control issue in system (1.3) using a suitable hybrid controller that combines
state feedback and parameter perturbation with delay. Using the ideas from [30,32], we achieve the
following controlled 3D Lotka-Volterra commensal symbiosis system:

d
”C;f” = 5[ = it — 6) = y1212(D) + Y Ous(D)] + Saluas (1) — 0y — 6],
o (= )
i rup(O[1 — ux(t — 0) — y21u1(1)] o+ (= pyu(t)’ 4.1)
dus B va(1 — pus(?)
@ O S e |

where 01, 0, stands for feedback gain parameters. Systems (4.1) and (1.3) own the same equilibrium
points E(uy, Usy, Uzs). Let
ui(t) = iy (t) + uys,
ur(t) = (1) + Uny, (4.2)
uz (1) = u3(1) + Uz,
denote ity as uy, ity as up,is as usz, and the linear system of system (4.1) around E(u4, Uz, U3y ) takes
the following expression:

d
ﬂ = duy + dotty + djus + dyu (t — 0),

_t = d5lx£1 + d6u2 + d7u3 + dguz(t — 9), (43)
i
d

i douy + dyou3,

where

di = (1 = u1x — y12U3, — Yut3,)01 + 62,
dy = =2y12U14U2401,
d3 = —yu1461,
dy = =61u14 — 02,
ds = =2rys Ui« Uoy,
de =1 — rug, — 7")/211/!% _ (1 = plus, + (1- p)2u2*u3* ’
v+ (L -puae vy + (1= pusy (4.4)

&= — (I = pury ’

v+ (1 = puos
dy = —riny,
dy = vs = pus v - D) Uz itz

vi+(1=puoe v+ = pus, >
_ v3(l = pluas —y
v -pu.
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The following expression is owned by the system (4.4)'s characteristic equation:

A—d, - d4€_/w —d, —ds
det —d5 A - d6 - dge_/w —d7 = 0,
0 —dg A— d]()

which leads to
B+ 22+ hod + hs + (g A% + hsd + he)e™ + (A + hg)e ™™ = 0,

where

hy = —d, — dg¢ — do,

hy = didg + didyo — dods + ded o — d7do,
hsy = d\d7dy — dided o + drdsdyg — dzdsdy,
hy = —dy — ds,

h5 = dldg + d4d6 + d4d10 + dgdl(),

he = dydrdy — didsdyo — daded,o,

hy = dys,

hy = —d,dsd,.

If 6 = 0, then Eq (4.6) reads as:

2+ (hy + h)% + (hy + hs + h))A + (hy + hg + hg) = 0.

If
Ay =hy +hy >0,
h1+l’l4 1
A B gt hy hoths+h |0
4 h1+l’l4 1 0
As=|hs+hg+hg hy+hs+h; hy + hy > 0,
0 0 hs + hg + hg

4.5)

(4.6)

4.7)

4.8)

holds, then the three roots A, A, A3 of Eq (4.8) have negative real portions. Thus, the equilibrium point
E(u14, Uy, Uzy) of model (4.1) remains locally asymptotically stable at 6 = 0. From (4.6), we can get

hyd? + hsAd + hg + (22 + h 22 + hyd + h3)e™ + (A + hg)e™ = 0.
Suppose that A = i{ is the root of Eq (4.9). Then, Eq (4.9) takes
ha(i0)* + hs(il) + he + [(i0)? + h (10 + ha(il) + h31e™ + [h7(i0) + hgle ™ = 0,
which results in

ha(i0)* + hs(i0) + he + [(i0)* + h1(i0)* + hy(i0) + h3][cos(£6) + i sin(£6)]
+[h7(il) + hg][cos(£6) — isin({O)] = 0.
It follows from (4.11) that

H, sin({0) + H, cos({0) = H3,
H, sin({0) + Hs cos({0) = Hs,

4.9)

(4.10)

4.11)

(4.12)
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where ;
Hy =0+ jid,
H, = —h1§2 + Jo,
Hs = hyl* — h,
Hy= -+ js,
Hs = -0+ jul,
Hg = —hsZ,
and
J1=hy = hy,
Jo = h3 + hg,
J3 =h3 — hg,
j4 = I’l2 + h7.
It follows from Cramers rule that
H Hs; — H;H
sin({6) = —H2H6 H3H5
HyHy — H, H,
cos({) = —————
H>H, — H Hs’

In view of cos?(Z6) + sin’(£6) = 1, we get

H,Hg — HyHs | | [ HsHa — HiH o .
H,H, — H,Hs H,H, - H,Hs|

Then,

H3H: +3; H; + HiH; + H;H; — HiH? — HyH;
—-2H,H;HsHs — 2H H;H,Hs + 2H H,H,Hs = 0.
Using (4.13) and (4.17), we know
(P =1{" Db - B~ L - 58 - 16 = 0,
where
Il = hi - 2]4 - 2]1 - Zh%,
I, = —2h4j4 - 2h4]’l6 + h2 ]’l2h2 j4 + 4j1j4

—]1 h4+2h2]4+2h1]3+2h1]2—2h1]1,
hi]4 + 4h4]’l6]4 + hz ]’lzh2 + 2]’12 —-2h hi]3 - 2h2h4h6 — 2j1j4

—2hy j3js + 2(]2 = hyji)(=hijs = j3) + 2hy ji1 o,
I, = —2h4h6]4 2hé]4 —-2h hgjz + ]’15]1 + h4‘]3 + 4h1h4]’l6j3 + h%]’lé - ]?]Z
— hij3 — 4R jo 3 — I J5 + 2hs ja(hihe + hajo) + 2hshe jo + 2hhshe jy
+ 2hs j3(haji — he) + 2j3ja(j2 — hij1) + 21 j2(=h1ja — J3),
Is = hgji + h3 5 = 2hahe j3 = 2hhg js + 2y a3 + 200 j3 3 — 2hshe ja ja
— 2hshej1j3 + 2j1j2J3]4s
hsfs Vvt

+2j7ja + 20 5 + 2h1]2 —2h h4h5J4 = 2h4hs jo — 2hyhyhs ji + 2hyhs 3

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)
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Let
Ra(Q) =P = 10" = B - B - L - 158 - Is. (4.20)
Suppose that
(As) |hel > |2l

holds, noticing that lim;_,,. R>({) = +co > 0, then we find that Eq (4.18) owns at least one positive
real root. Thus, Eq (4.6) owns at least one pair of pure roots. Without loss of generality, here we assume
that Eq (4.18) admits twelve positive real roots (say, {,,t = 1,2,3,---,12). According to (4.15), one
gets

o = 1 [arccos (Hi(fl)Hi(fl) - Hl(é)Hi(&)) N 2k7r] ’ @421
I HY({)H; (&) — HE (GHZ (L)
where¢ =1,2,3,---12;k=0,1,2---;
HY () =& + jid,
H(Z) = =} + jos
H3 (&) = hal] — he. 422)

HI (&) = il + i,
HX(&) = =4 + jadi,
H; (&) = —hs.

Denote 6, = ming=;23,....12:=0,1.2.- }{Gfk)} and suppose that when 6 = 6,, (4.6) owns a pair of imaginary
roots +ify.

Now, the following condition is presented:

(As) Q1rQar + Q1102 > 0,

where
Qir = —2h14osin(lo6y) — (3L5 — hy — hy) cos(Loby),
Q11 = (=345 + hy — hy) sin(£160,) + 21 cos(Loby),
Ok = (=g + h3do + hglo) sin(Lobs) + (=Lg + haly — hal3) cos(Loby),
Qo1 = (=5 + haly + h7{3) sin(Loby) + (hidy — h3do + hsdo) coS(LoBy)-

Lemma 4.1. Let A(0) = n1(0) + in2(6) be the root of Eq. (4.9) at 6 = 0, obeying 111(6,) = 0,12(04) = o,

then Re (;’—g) '9:9*{:{0 > 0.

(4.23)

da dAa
3% + 2 A + hz)e’w@ + (B + A% + hod + hy)e (@9 + /1)

dAa dAa da
+h7e-*9£ — (WA + hg)e™ (59 + /1) + 2hyd + hs)@ =0, (4.24)

which leads to

(d_ﬂ)l _0 0 s
do () A '
where
01(D) = B2 + 21 A + hy)e™ + hye™,
{ 0>(D) = (hAd + hg)Ade™ — (X + hi A% + hod + h3)Ae®. (4.26)
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Hence,
-1
Re {(@) } ~ Re [Ql(/l)] _ QIRQZZR + Q211Q21. 4.27)
do 0=04.0=00 Q2 (d) 0=04.0=o w+ O
By (Ag), one gets
-1
Re l(d—/l) ] > 0, (4.28)
do 0=04.0=o

which completes the proof.
Based on the study above, the following conclusion is lightly acquired.

Theorem 4.1. Suppose that (Ay)—(Ag) hold, then the equilibrium point E(uyy, Uy, Usx) of model (4.1)
holds locally asymptotically stable if 0 € [0, 0,) and model (4.1) produces Hopf bifurcations at the
equilibrium point E(Uy4, Uz, U3x) When 6 = 0.

5. Bifurcation domination using extended hybrid controller 1I

In this part, we will investigate the Hopf bifurcation problem of system (1.3) using a suitable
extended delayed feedback controller consisting of parameter perturbation with delay. In accordance
with [33,34], we propose the following controlled predator-prey model:

d

L;t( D — ol (1 = 110 = 6) = y1230) + s Ous()] + palin (1) - i t = D),
ddt St (10) ;’211/!1] vi+ (1= puy’ (5.1)
f = psuz[—vy + v:}i(l—%] + p4lus(t) — usz(t — 6)],

where p; — p4 stands for feedback gain parameters. System (5.1) owns the same equilibrium point
E(u14, Uy, Uzy) as that of system (1.3). Let

u(t) = uy (1) + uy,
uy(t) = iz (1) + Uy, (5.2)
uz(t) = u3(t) + uzy,

denote ity as uy, ity as up,is as uz, and the linear system of system (5.1) around E(u14, Uy, U3y ) takes
the following expression:

du
a¢_t1 = fiur + fouy + fruz + fau (t - 0),
u
d—: = fsui + four + fruz + fauo(t —0), (5.3)
du
d_: = fouy + fiousz + friusz(t —6),

AIMS Mathematics Volume 9, Issue 11, 29883-29915.



29900

where
fi=d—u— 7’12M§* — yuz)p1 + pa,
fo = =2y1uium.p1,

f3 = —yui.p1,
f4 = —P1Uix — P2,
fs = =2rysuy oy,

fo =1 = ruay — rynuy, — d-puw. _{ = P uzaltse
- v+ (1= pluns i+ (1 = puse*

3 (1 = pluay
f7 - )
v+ (1 = pluzy
fS = —rl/lZ*,

vi+(=puse vy + (1 = pluse]?
v3(l = pluy,
3,
vi + (1 = pluyy

B ( v3(1 = plus, v3(1 = p)’uzsitzy )
fo= 35

fio= (P4 -V +
Ji1 = —pa4.

The characteristic equation of system (5.3) owns the following expression:

A—- f] - d4€_/w _f2 _f.’)
det —f5 A= fo— fse=® ki =0,
0 —fo A= fio— fue™

which leads to

A A0 -340 0
b

B+ mA +md +ms + (m4/l2 + msd + mg)e Y + (my A + mg)e_2 + mge =
that is,

210

(/l3 +m A+ mod + ms)e”" + (mA,/l2 + msd + mg)e + moe™® + maAd + mg = 0,

where

my = —f1 = fs — fio,

my = fifs + fifio — fofs + feSi0 — f1 /o,

m3 = fififo — fifeSio + fofsfio — f3 S5/

my = —fa— f3 — fi1,

ms = fifs + fafs + fafio + fefio + fifir + fefits
me = faf1fo — fifsSfio — fafeSio + fifsS11 + fafsSi1s
my = fafs + faf11 + fsfi1s

mg = —fafsfio — fafeS10 — fafeS11 — fifs /i1,

my = —fafsfi1-

If 6 = 0, then Eq (5.6) reads as:

/l3+(m1+m4)/12+m3+(m2+m5+m7)+m3+m6+mg+m9=0.
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If
Vi=my+my >0,
my +m 1
v, = L >0,
ms +meg+mg+myg my+ ms+ ny
(A7)
my + my 1 0
Vi=| my+mg+mg+mg my+ms+nmy my + my > 0,
0 0 ms + meg + mg + nig

is fulfilled, the three roots of Eq (5.6), 4;, 4, 43, have negative real components. Therefore, the
equilibrium point E(u4, Uz, U3,) of system (5.1) with € = 0 is locally asymptotically stable.
Suppose that 4 = iw is the root of Eq (5.7), then Eq (5.7) becomes:

[(iw)® + m (i) + my(iw) + m3]e*? + [ma(iw)? + ms(iw) + mg)]e™?

—iwd

+moye + mq(iw) + mg = 0. (5.10)
By (5.10), we have

(a)3 - mzw) sin(2wb) + (—m1w2 + m3) cos(2w0l) — msw sin(wh)
+(mg + my — muw?) cos(wh) + mg = 0,

(mzw - w3) cos(2wh) + (—m1w2 + m3) sin(2wé) + msw cos(wh)
+(mg — My — maw?) sin(wh) + myw = 0,

(5.11)

and from (5.11), we can get

M, cos*(wb) + M, cos(wb) + M5 = (My + Ms cos(wh)) V1 = cos?(wh), (5.12)

where
M, = —2m1w2 + 2m3,
M, = mg + mg — m4w2,
M; = miw* — m3 + mg, (5.13)
M4 = msw,
Ms = 2myw — 2w°.

So, we can get
N,cos*(wb) + Nocos® (wh) + Nicos*(wh) + Ny cos(wb) + Ns = 0, (5.14)

where
N, = M7 + M3,
N, =2M M, + 2M4M5,
N3 = 2M M3 + M; + M — M3, (5.15)
Ny =2M M5 + 2M 4 Ms,
Ns = M; + M.

From (5.14), we can suppose that cos(wf) = y, and we have
Niy* + Noy* + N3y? + Nyy + Ns = 0. (5.16)
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According to the computer software, we can get
cos(w;6;) =y:i(i = 1,2,3,4). (5.17)

It follows from (5.17) that

1
05") = —J[arccosy, + 2nn], (5.18)
Wy
wheret=1,2,3,4,n=0,1,2,3,---.

Let 0* = min{,=1,2,3,4;,,=1,2,3,...}{65")}, and assume that when 6 = 6*, Eq (5.6) has at least one pair of
pure real roots +iw,. Next, the following assumption is needed:

(Ag) T\gTog +T1;T >0,

where
Tir = (=3w] + my) cos(2wof*) — 2mywy sin(wed*)

+ ms cos(wef™) — 2mawy sin(wed™) + m,

Ti; = (=3wj + my) sin(2wf*) + 2m;wy cos(2wed*)
+ ms Sin(a)og*) + 2mawy COS((,L)()@*),

Tor = (—2wq + 2mywp) cosRweb*) — (2mywy — 2mswp) sin(2wod*)
+ mswj cos(wef*) + (mowy — mywy + mewy) sin(wed*),

Ty = (—2wg + 2myw}) sin(wed*) + (2m w; — 2m3wo) cos(2wed*)
+ mswj sin(wed*) + (Mmowy + Mmyw;, — Mmewy) cos(wed™®).
Lemma 5.1. Suppose that A(0) = ¥((6) + iy,(0) is the root of Eq (5.7) at 6 = 6* such that y(6*) = 0

W (0%) = wy , then Re (fl—g)' > 0.

0=6* ,w=wy

Proof. By Eq (5.7), one gets

(5.19)

da da
G +2m A + m2)€2/w£ + (B + mA® + md + my)e*Y (@29 + 2/1)

dAa da dAa
+(2myd + ms)e'?— + (m4/12 + msA + mg)e’ (@8 + /l) +m;—

do do
_pfdA
—mge™"? (@9 + /l) =0, (5.20)
which implies
d\" T 6
- _ T 6 (5.21)
do T,(1) A
where
Ty(A) = B2+ 2my A + m)e* + 2mud + ms)e'® + my,
3 2 206 2 26 -0 (5.22)
Tr(A) = =A[2(A° + my A~ + mad + m3)e”” + (myA” + msAd + mg)e™ — moe™ " ].
Hence 1
da\ T,(1 TrT T,,T
Re [(_) l :Re[ 1( )] _lr §R+ ;1 2 (5.23)
do 0=60* w=w, T>() 6=6* ,w=wy T + T3
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By (Ag), we have

da\™!
Rel|[=Z >0, (5.24)
o) |,y
=60* ,w=w

which concludes the proof.

Based on the research presented above, the following conclusion is loosely drawn.

Theorem 5.1. Suppose that (A7) — (Ag) hold, then the equilibrium point E(uy4, Uz, U3«) of model (5.1)
is locally asymptotically stable if 6 € [0,6%) and model (5.1) generates Hopf bifurcations at the
equilibrium point E(uy, Uy, Uzy) When 6 = 6*.

Remark 5.1. In Section 4, the controller is called the hybrid controller that includes state feedback and
parameter perturbation with delay. This controller is only added to the first equation of system (1.3).
In Section 5, the controller is called the extended hybrid controller that includes state feedback and
parameter perturbation with delay. This controller is added to the first equation and the third equation
of system (1.3). Hybrid controller Il owns more control parameters than those in hybrid controller I and
has greater adjustment flexibility in controlling the stability domain and the onset of Hopf bifurcation
of system (1.3).

6. Software experiments

Example 6.1. Think about the following Lotka-Volterra commensal symbiosis system:

D) _ (O — ui (¢ = 6) — 1.1u3(8)) + 0.04u; (Hus(2),

dur(t) s (L= 0.Dup(Dus()

ddt() = 0.5ux(1)(1 uz(to 5(91) 8-??1(2); 02+ (1=0.Dm0) (6.1)
us(t _ 3 . — 0. Duy (¢
a0 G T D

It is straightforward to see that system (6.1) has a single positive equilibrium point
E(0.7092,0.5185,0.1224). One can easily verify that the conditions (A;)—(Aj3) of Theorem 3.1 hold
true. Using Matlab software, we can obtain 6, ~ 1.3. To validate the accuracy of Theorem 3.1, we use
two distinct delay values: € = 0.8 and 6 = 1.9. For 6 = 0.8 < 6y ~ 1.3, simulation graphs are provided
in Figure 1. Figure 1 shows that u; — 0.7092,u, — 0.5185,u3 — 0.1224 as t — +oco. In this case, the
equilibrium point E£(0.7092,0.5185,0.1224) of model (6.1) has a locally asymptotically stable state.
For 6 = 1.9 > 6, = 1.3, we receive simulation graphs, as shown in Figure 2. Figure 2 shows that u;
maintains a periodic vibrating level around 0.7092, whereas u, maintains a level around 0.5185 and u3
maintains a periodic vibrating level around 0.1224. That is, a set of periodic solutions (known as Hopf
bifurcations) arise at the equilibrium point £(0.7092,0.5185,0.1224).
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Figure 1. Matlab simulation figures of system (6.1) under the delay 8 = 0.8 < 6 =
1.3, and the equilibrium point E(u;., us., u3.) = E(0.7092,0.5185,0.1224) holds a locally
asymptotically stable level.
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Example 6.2. Think about the following controlled Lotka-Volterra commensal symbiosis system:

d
b;t(t) = 61 [uy (1)1 = uy(t — 6) — 1.1u5(1)) + 0.04u, (£)u3 ()] + 62 [u1 (1) — uy (¢ — 6)],
duy (1 = 0.Duy(t)us (1)

= 0.5u,(N[1 — ua(t — 0) — 0.3u3(1)] —

(6.2)

a1 02+ (=000
duy ) 0.5(1 = 0.1)ur(?)
a0 e T T 0 im0 |

It is straightforward to see that system (6.2) has a single positive equilibrium point
E(0.7092,0.5185,0.1224). Let 6; = 0.5,6, = —0.1. One can easily verify that the conditions (A,)—
(Ag) of Theorem 4.1 hold true. Using Matlab software, we can obtain 6, =~ 1.8. To validate the
correctness of the acquired assertions of Theorem 4.1, we use two distinct delay values: 6 = 1.6 and
6 = 225 . For 8 = 1.6 < 6, ~ 1.8, we get simulation diagrams which are presented in Figure 3.
Based on Figure 3, we find that u; — 0.7092,u, — 0.5185,u3 — 0.1224 when t — +oco. In other
words, the equilibrium point £(0.7092,0.5185,0.1224) of model (6.2) holds a locally asymptotically
stable state. For 6 = 2.25 > 6, ~ 1.8, we get simulation diagrams which are presented in Figure 4.
Based on Figure 4, we find that #; maintains a periodic vibrating level around 0.7092, whereas u,
maintains a level around 0.5185 and u3 maintains a periodic vibrating level around 0.1224. That is
to say, a family of periodic solutions (namely, Hopf bifurcations) appear near the equilibrium point
E(0.7092,0.5185,0.1224).

Example 6.3. Think about the following controlled Lotka-Volterra commensal symbiosis system:

d
b;:t) = p1[ur ()1 = uy (t — ) — 1.1u3(0)) + 0.04u,(Duz(1)] + paluy (£) — ui (t — 6)],
duy (1 - 0.Dusus

= 0.5uy(O[1 — up(t — 6) — 0.3u%] - (6.3)

dt 02+(1-0.Duy’

dus 0.5(1 = 0.D)u,

— = -0.35 t t—0)].
o P T TG + palus () + us(t — 0)]

It is straightforward to see that system (6.3) has a single positive equilibrium point
E(0.7092,0.5185,0.1224). Let p; = 0.5,p, = -0.1,p3 = 0.6,p4 = —0.1. One can easily verify
that the conditions (A7) and (Ag) of Theorem 5.1 hold true. By applying Matlab software, one can
get 0* =~ 2.20. To validate the correctness of the acquired assertions of Theorem 5.1, we choose both
different delay values: 6 = 2.00 and 6§ = 2.75. For 6 = 2.00 < 6* =~ 2.20, we get simulation diagrams
which are presented in Figure 5. Based on Figure 5, we find that u; — 0.7092,u, — 0.5185,u3 —
0.1224 when t — +o00. In other words, the equilibrium point £(0.7092,0.5185, 0.1224) of model (6.3)
holds a locally asymptotically stable state. For 6 = 2.75 > 8* =~ 2.20, we get simulation diagrams
which are presented in Figure 6. Based on Figure 6, we find that #; maintains a periodic vibrating level
around 0.7092, whereas u, maintains a level around 0.5185 and u3 maintains a periodic vibrating level
around 0.1224. That is to say, a family of periodic solutions (namely, Hopf bifurcations) appear near
the equilibrium point £(0.7092,0.5185, 0.1224).
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Remark 6.1. It follows from the Matlab simulation results of Examples 6.1-6.3 that one can know
that the bifurcation value of system (6.1) is equal to 1.3, the bifurcation value of system (6.2) is equal
to 1.8 and the bifurcation value of system (6.3) is equal to 2.20, which indicates that we can expand
the domain of stability of system (6.1) and postpone the time of emergence of Hopf bifurcation of
system (6.1) via the formulated two hybrid delayed feedback controllers.

7. Conclusions

It is generally recognized that the delayed dynamical model is an important tool for understanding
the interactions of many biological populations in the natural environment [35-37]. Many
studies on predator-prey models have conducted and yielded numerous results over the last few
decades [38—40]. In this study, we provide a novel delayed Lotka-Volterra commensal symbiosis
model. This paper discusses the uniqueness, nonnegativeness, and boundedness of the delayed Lotka-
Volterra commensal symbiosis solution. The Hopf bifurcation issue is addressed. Then, the critical
delay value 6, is retrieved. In order to modify the domain of stability and the time of the bifurcation
phenomenon in this model, we have successfully developed two distinct hybrid delayed feedback
controllers. Two critical delay values, 6,,6*, are acquired. In these two controllers, the role of delay
is displayed. Theoretically, the exploration fruits are very useful for managing and balancing the
populations of two species. Furthermore, the exploratory concepts may be used for other fractional-
order and integer-order dynamical systems in a wide range of disciplines to dominate the bifurcation
phenomena, stability, and chaos [41-43]. During the past decades, many works on this topis is
explored, see [44—46]. In this paper, we only deal with the Hopf bifurcation onset and Hopf bifurcation
control in this paper. We leave the stability and direction of Hopf bifurcation periodic solutions for
future work and we will refer to the works in [47-49]. In addition, we will explore the Hopf bifurcation
of fractional-order dynamical models [50-52].
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