
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(11): 29883–29915.
DOI: 10.3934/math.20241445
Received: 11 September 2024
Revised: 09 October 2024
Accepted: 11 October 2024
Published: 21 October 2024

Research article

Mathematical exploration on control of bifurcation for a 3D predator-prey
model with delay

Yingyan Zhao1, Changjin Xu2,*, Yiya Xu3, Jinting Lin1, Yicheng Pang1, Zixin Liu1 and Jianwei
Shen4

1 School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang
550025, China

2 Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and
Economics, Guiyang 550025, China

3 School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
4 School of Mathematics and Statistics, North China University of Water Resources and Electric

Power, Zhengzhou 450046, China

* Correspondence: Email: xcj403@126.com; Tel: +18688510704; Fax: +18688510704.

Abstract: In this current paper, we developed a new predator-prey model accompanying delay based
on the earlier works. By applying inequality strategies, fixed point theorem, and a suitable function,
we got new necessary conditions for the existence, uniqueness, nonnegativeness, and boundedness
of the solution to the developed delayed predator-prey model. The bifurcation behavior and stability
nature of the defined delayed predator-prey model were investigated by using stability and bifurcation
theory of delayed differential equations. We have modified the Hopf bifurcation’s appearance time and
stability domain by building two distinct hybrid delayed feedback controllers for the delayed predator-
prey model. The time of Hopf bifurcation appearance and stability domain of the model were explored.
Matlab experiment diagrams were given to support the learned important results. The derived outcomes
in this paper were original and have significant theoretical implications for maintaining equilibrium
between the densities of the three species.

Keywords: predator-prey model; feature of solution; Hopf bifurcation; hybrid controller; delay;
stability
Mathematics Subject Classification: 34C23, 34K18, 37GK15, 39A11, 92B20

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241445


29884

1. Introduction

It is widely accepted that the delayed dynamical model is an important tool for answering many
issues in biology. Numerous academics focus extensively on the development of diverse predator-
prey models to elucidate the dynamics and internal structure within biological populations. We can
successfully regulate the concentrations of predators and preys in the natural world by investigating
the various dynamical characteristics of predator-prey models. Numerous studies on predator-prey
models have been submitted and released in recent years, and several outstanding studies have been
discussed. For example, Din et al. [1] studied the discrete predator-prey interactions with chaos
control and bifurcation analysis. Liu and Guo [2] examined the dynamics of a predator-prey system
with nonlinear prey-taxis, using the Lyapunov-Schmidt reduction approach, the fold-Hopf singularity,
Hopf bifurcation, and steady state bifurcation are examined in depth. Al-Kaff et al. [3] investigated
bifurcation and chaos in a discrete predator-prey system using a linked logistic map, a wide range of
the system’s behavior is thoroughly examined in the study. Pita et al. [4] investigated a review of some
recent advances in predator-prey models. For more extensive investigations, see [5–9].

In particular, Lotka-Volterra models are vital predator-prey models in biology. They play an
important role in describing the correlation between predators and prey. During the past decades,
many works on this topic have been reported. For example, Hsu et al. [10] studied three different
species of omnivorous Lotka-Volterra food web models. Bunin [11] studied the Lotka-Volterra model
for ecological communities exhibiting symmetry and connected it to other well-known models. Wu
et al. [12] investigated the Grey Lotka-Volterra model and its application, effectively analyzing the
link between the two variables and forecasting their values using the gray Lotka-Volterra model.
Kloppers et al. [13] estimated the parameters of the Lotka-Volterra model from empirical data.
Marasco et al. [14] found the development of market share dynamics through the application of Lotka-
Volterra models, and Wang et al. [15] examined the problems with free boundaries in a Lotka-Volterra
competition system. Zhou [16] investigated a two-species Lotka-Volterra competition system in one-
dimensional advective environments. Cherniha et al. [17] studied a review and new findings regarding
the construction and application of exact solutions to the diffusive Lotka-Volterra system.

In 2022, Prabir et al. [18] suggested the subsequent Lotka-Volterra mutualistic symbiotic
relationship: 

df1

dT
= r1f1

[
1 −
f1

K1
−
α12

K1
f2

2
]

+ δ13f1f3,

df2

dT
= r2f2

[
1 −
f2

K2
−
α21

K2
f1

2
]
−

a(1 − p)f2f3

b + (1 − p)f2
,

df3

dT
= f3

[
−e +

ac(1 − p)f2

b + (1 − p)f2

]
,

(1.1)

where f1 and f2 indicate the density of two logistically increasing competing species, f3 represents
the density of a predatory species of f2, r1, r2 are the natural rates of growth for species f1 and f2,
K1,K2 are the carrying capacity of species f1 and f2 respectively, α12, α21 represent the fight between
two species f1 and f2, δ13 is the commensal coefficient of f1 over f3 species, a is the frequency at
whichf3 species attackf2 species, p is the refuge rate off2 species, c refers to the rate of conservation
of f2 species, b is the steady value for half saturation for the Holling type II function, and e is the rate
of extinction for species f3. One might refer to [18] for a more precise explanation of the meaning of
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system (1.1).
In order to make the suggested mathematical model nondimensional, we have now added a few

variables and constants as t = r1T, u1 = f1
K1
, u2 = f2

K2
, u3 = af3

r1K2
, γ12 =

α12K2
2

K1
, γ = δ13K2

a , r = r2
r1
, γ21 =

α21K2
1

K2
, v1 = b

K2
, v2 = e

r1
, v3 = ac

r1
.

Then model (1.1) can be simplified to the following form

du1(t)
dt

= u1(t)(1 − u1(t) − γ12u2
2(t)) + γu1(t)u3(t),

du2(t)
dt

= ru2(t)(1 − u2(t) − γ21u2
1(t)) −

(1 − p)u2(t)u3(t)
v1 + (1 − p)u2(t)

,

du3(t)
dt

= u3(t)
(
−v2 +

v3(1 − p)u2(t)
v1 + (1 − p)u2(t)

)
,

(1.2)

with initial conditions u1(0) ≥ 0, u2(0) ≥ 0, u3(0) ≥ 0.
In this instance we want to call your attention to the truth that the evolution of species frequently

depends on both historical and present times; hence, delays must be incorporated into biological
models. Notice that the development of the density of two logistically increasing competing speciesf1

and f2 rely on not only the current time but also the past time. In other words, the development of the
density of two logistically increasing competing species f1 and f2 shall have feedback delays. Based
on this idea, we assume that there are two self-feedback delays in model (1.2): One is the self-feedback
delay from the first species u1 to the first species u1, and the other the self-feedback delay from the first
species u2 to the first species u2. The points that follow delayed Lotka-Volterra commercially available
symbiosis system may then be loosely formulated:

du1(t)
dt

= u1(t)(1 − u1(t − θ) − γ12u2
2(t)) + γu1(t)u3(t),

du2(t)
dt

= ru2(t)(1 − u2(t − θ) − γ21u2
1(t)) −

(1 − p)u2(t)u3(t)
v1 + (1 − p)u2(t)

,

du3(t)
dt

= u3(t)
(
−v2 +

v3(1 − p)u2(t)
v1 + (1 − p)u2(t)

)
,

(1.3)

where θ > 0 is a time delay and all the parameters γ12, γ, r, γ21, v1, v2, v3 are positive constants. The
initial conditions of system (1.3) are given by ui(s) = φi(s) ≥ 0, i = 1, 2, 3, s ∈ [−θ, 0] and φi(s) ∈
C([−θ, 0],R+), i = 1, 2, 3.

Mathematically speaking, delays play a key role in determining how different differential systems
behave dynamically [19–21]. Delays can lead to a variety of consequences, including changes in
stability, the formation of bifurcations, and the start of chaotic behavior [22–24]. During the past
decades, many authors deal with this topic, see [25–27]. Specifically, the dynamic phenomena
of delays-induced Hopf bifurcation is quite significant [28–30]. From a biological perspective,
delay-induced Hopf bifurcation nicely captures the equilibrium between densities of different living
populations [31]. We contend that in order to understand the dynamics of interactions across various
biological populations, it is critical to investigate delay-induced Hopf bifurcation in a variety of
biological models. Motivated by this idea, we will concentrate on the Hopf bifurcation and its
bifurcation control mechanisms. Specifically, we will address three critical questions: (1) Assess
the distinctive features of the solution to system (1.3), including its nonnegativity, existence and
uniqueness, and boundedness. (2) Examine the system’s stability problem and the formation of the
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Hopf bifurcation phenomena (1.3). (3) Build both controllers for adjusting the range of stability and
the generation time of the Hopf bifurcation in system (1.3).

The following is an introduction of the study’s primary luminous spot: (i) A completely new delay-
independent bifurcation and stability criterion for system (1.3) is established based on the earlier
studies. (ii) Using separate controllers, the realm of stability and the time of Hopf bifurcation in
system (1.3) may be regulated well. (iii) This study examines how delay affects Hopf bifurcation and
the stability of first and second species densities in system (1.3).

The stated arrangement of the article is as follows. The “Feature of solution” section discusses
the unique characteristics of system (1.3), such as boundedness, nonnegativeness, existence, and
uniqueness. The “Bifurcation analysis” section discusses the bifurcation phenomena and the system’s
stability (1.3). The “Bifurcation domination using extended hybrid controller I” section centers around
the control issue associated with bifurcation phenomena for system (1.3) by formulating a plausible
hybrid delayed feedback controller that involves parameter perturbation is accompanied by latency
and state feedback. “Bifurcation domination using extended hybrid controller II” section addresses
the control challenge of the bifurcation phenomena in system (1.3). Creating a suitable hybrid
delayed feedback controller with parameter perturbation for delay and state feedback. The “Software
experiments” section provides Matlab software simulation results to assess the veracity of the obtained
main results. “Conclusions” concludes this study concisely.

2. Feature of solution

This section will examine the characteristics of the solution to system (1.3), such as its existence
and uniqueness, nonnegativeness, and boundedness. To do this, we will employ fixed point theory,
inequality methods, and the design of an appropriate function.

Theorem 2.1. Let ∆ = {(u1, u2, u3) ∈ R3 : max{|u1|, |u2|, |u3|} ≤ M}, where M > 0 denotes a constant.
For every (u10, u20, u30) ∈ ∆, system (1.3) under the initial value (u10, u20, u30) owns a unique solution
U = (u1, u2, u3) ∈ ∆.

Proof. Set
f (U) = ( f1(U), f2(U), f3(U)), (2.1)

where 
f1(U) = u1(t)(1 − u1(t − θ) − γ12u2

2(t)) + γu1(t)u3(t),

f2(U) = ru2(t)(1 − u2(t − θ) − γ21u2
1(t)) −

(1 − p)u2(t)u3(t)
v1 + (1 − p)u2(t)

,

f3(U) = u3(t)(−v2 +
v3(1 − p)u2(t)

v1 + (1 − p)u2(t)
).

(2.2)

For arbitrary U, Ũ ∈ ∆, one gains

|| f (U) − f (Ũ)||
= | f1(u) − f1(ū)| + | f2(u) − f2(ū)| + | f3(u) − f3(ū)|
=

∣∣∣[u1 − u1u1(t − θ) − γ12u1u2
2 + γu1u3]

−
[
ū1 − ū1ū1(t − θ) − γ12ū1ū2

2 + γū1ū3

]∣∣∣∣
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+

∣∣∣∣∣∣
[
ru2 − ru2u2(t − θ) − rγ21u2

1u2 −
(1 − p)u2u3

v1 + (1 − p)u2

]
−

[
rū2 − rū2ū2(t − θ) − rγ21ū2

1ū2 −
(1 − p)ū2ū3

v1 + (1 − p)ū2

]∣∣∣∣∣∣
+

∣∣∣∣∣∣
[
−v2u3 +

v3(1 − p)u2u3

v1 + (1 − p)u2
)
]
−

[
−v2ū3 +

v3(1 − p)ū2ū3

v1 + (1 − p)ū2
)
]∣∣∣∣∣∣

≤ |u1 − ū1| + |u1u1(t − θ) − ū1ū1(t − θ)| + γ12

∣∣∣u1u2
2 − ū1ū2

2

∣∣∣
+ γ |u1u3 − ū1ū3| + r |u2 − ū2| + r |u2u2(t − θ) − ū2ū2(t − θ)|

+ rγ21

∣∣∣u2
1u2 − ū2

1ū2

∣∣∣ + (1 − p)
∣∣∣∣∣ (1 − p)u2u3

v1 + (1 − p)u2
−

(1 − p)ū2ū3

v1 + (1 − p)ū2

∣∣∣∣∣
+ v2 |u3 − ū3|+ v3(1 − p)

∣∣∣∣∣ u2u3

v1 + (1 − p)u2
−

ū2ū3

v1 + (1 − p)ū2

∣∣∣∣∣
≤ |u1 − ū1| + |u1u1(t − θ) − ū1u1(t − θ) + ū1u1(t − θ) − ū1ū1(t − θ)|

+ γ12

∣∣∣u1u2
2 − ū1u2

2 + ū1u2
2 − ū1ū2

2

∣∣∣ + γ |u1u3 − ū1u3 + ū1u3 − ū1ū3|

+ r |u2 − ū2| + r |u2u2(t − θ) − ū2u2(t − θ) + ū2u2(t − θ) − ū2ū2(t − θ)|
+ rγ21

∣∣∣u2
1u2 − ū2

1u2 + ū2
1u2 − ū2

1ū2

∣∣∣
+ (v3 + 1) (1 − p)

∣∣∣∣∣ u2u3[v1 + (1 − p)ū2] − ū2ū3[v1 + (1 − p)u2]
[v1 + (1 − p)u2][v1 + (1 − p)ū2]

∣∣∣∣∣
≤ |u1 − ū1| + M |u1 − ū1| + M |u1(t − θ) − ū1(t − θ)| + γ12M2 |u1 − ū1|

+ 2γ12M2 |u2 − ū2| + γM |u1 − ū1| + γM |u3 − ū3| + r |u2 − ū2| + rM |u2 − ū2|

+ rM |u2(t − θ) − ū2(t − θ)| + 2rγ21M2 |u1 − ū1| + rγ21M2 |u2 − ū2|

+
v1 (v3 + 1)
(1 − p)M

|u2 − ū2| +
v1 (v3 + 1)
(1 − p)M

|u3 − ū3| + (v3 + 1) |u3 − ū3|

= (1 + 2M + γ12M2 + γM + 2rγ21M2) |u1 − ū1| + (2γ12M2 + r + rM + rM

+ rγ21M2 +
v1 (v3 + 1)
(1 − p)M

) |u2 − ū2| + (γM +
v1 (v3 + 1)
(1 − p)M

+ v3 + 1) |u3 − ū3|

= σ1 |u1 − ū1| + σ2 |u2 − ū2| + σ3 |u3 − ū3|

≤ L(|u1 − ū1| + |u2 − ū2| + |u3 − ū3| ), (2.3)

where 
σ1 = 1 + 2M + γ12M2 + γM + 2rγ21M2,

σ2 = 2γ12M2 + r + rM + rM + rγ21M2 +
v1 (v3 + 1)
(1 − p)M

,

σ3 = γM +
v1 (v3 + 1)
(1 − p)M

+ v3 + 1.

(2.4)

Let
L = max{σ1, σ2, σ3}. (2.5)

Then it follows from (2.3) that
|| f (U) − f (Ũ)|| ≤ L||U − Ũ ||. (2.6)

Consequently, f (U) adheres to the Lipschitz condition for U. By applying the fixed point theorem, it’s
possible to infer with ease that Theorem 2.1 is right.
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Theorem 2.2. Each solution to system (1.3) beginning with R3
+ maintains a nonnegative value.

Proof. Considering the initial equation of system (1.3), it’s possible to achieve

du1

dt
= u1[1 − u1(t − θ) − γ12u2

2] + γu1u3, (2.7)

then

du1

u1
= [1 − u1(t − θ) − γ12u2

2 + γu3]dt, (2.8)

which leads to ∫ t

0

du1

u1
=

∫ t

0
[1 − u1(s − θ) − γ12u2

2 + γu3]ds, (2.9)

then one gets

ln
u1(t)
u1(0)

=

∫ t

0
[1 − u1(s − θ) − γ12u2

2 + γu3]ds, (2.10)

thus

u1(t) = u1(0) exp{
∫ t

0
[1 − u1(s − θ) − γ12u2

2 + γu3]ds} > 0. (2.11)

In the same way, we know

u2(t) = u2(0) exp
{∫ t

0
[r − ru2(s − θ) − rγ21u2

2 −
(1 − p)u3

v1 + (1 − p)u2
]ds

}
> 0. (2.12)

u3(t) = u3(0) exp
{∫ t

0
[−v2 +

v3(1 − p)u2

v1 + (1 − p)u2
]ds

}
> 0. (2.13)

Therefore, the validity of Theorem 2.2 is affirmed.
Theorem 2.3. Each solution to system (1.3), starting with R3

+, is invariably restricted.
Proof. From the second equation of system (1.3), we have

du2

dt
= ru2(1 − u2(t − θ) − γ21u2

1) −
(1 − p)u2u3

v1 + (1 − p)u2
. (2.14)

Then
du2

dt
≤ ru2. (2.15)

Integrating from (t − θ) to t on both sides of the Eq (2.15) leads to∫ t

t−θ

du2

u2
≤

∫ t

t−θ
rdt. (2.16)

We get
u2(t) ≤ u2(t − θ)erθ, (2.17)
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then
u2(t − θ) ≥ u2(t)e−rθ, (2.18)

from (2.14), we can get

du2

dt
≤ ru2(t)(1 − u2(t − θ)) ≤ ru2(t)(1 − u2(t)e−rθ). (2.19)

So
du2

dt
≤ u2(t)(r − re−rθu2(t)). (2.20)

Hence
u2(t) ≤ erθ. (2.21)

Now, we define the following function

W1 = u2 +
1
v3

u3. (2.22)

Then

dW1

dt
=

du2

dt
+

1
v3

du3

dt

=

[
ru2(1 − u2(t − θ) − γ21u2

1) −
(1 − p)u2u3

v1 + (1 − p)u2

]
+

[
u3

v3
(−v2 +

v3(1 − p)u2

v1 + (1 − p)u2
)
]

= ru2(1 − u2(t − θ) − γ21u2
1) −

v2u3

v3

≤ ru2[1 − u2(t − θ)] −
v2u3

v3

= −v2

(
u2 +

1
v3

u3

)
+ v2u2 + ru2[1 − u2(t − θ)]

≤ −v2

(
u2 +

1
v3

u3

)
+ (v2 + r)u2

≤ −v2

(
u2 +

1
v3

u3

)
+ (v2 + r)erθ

= −v2W1(t) + (v2 + r)erθ. (2.23)

Thus

W1(t) ≤
(v2 + r)erθ

v2
. (2.24)

Next we define another function W2 as follows

W2 = u1 + u2 +
1
v3

u3. (2.25)

Then, we get

dW2

dt
=

du1

dt
+

du2

dt
+

1
v3

du3

dt
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=
[
u1(1 − u1(t − θ) − γ12u2

2) + γu1u3

]
+

[
ru2(1 − u2(t − θ) − γ21u2

1) −
(1 − p)u2u3

v1 + (1 − p)u2

]
+

[
u3

v3
(−v2 +

v3(1 − p)u2

v1 + (1 − p)u2
)
]

=
[
u1(1 − u1(t − θ) − γ12u2

2) + γu1u3

]
+

[
u1(1 − u1(t − θ) − γ12u2

2) + γu1u3

]
≤ −v2

(
u1 + u2 +

1
v3

u3

)
+ v2u1 + v2u2 + u1[1 − u1(t − θ)]

+γu1u3 + ru2[1 − u2(t − θ) − γ21u2
1]

= −v2

(
u1 + u2 +

1
v3

u3

)
− γ21ru2u2

1 + (v2 + 1 + γu3)u1 + (v2 + r)u2

≤ −v2

(
u1 + u2 +

1
v3

u3

)
− γ21ru2u2

1 + (v2 + 1 + γu3)u1 + (v2 + r)u2

≤ −v2

(
u1 + u2 +

1
v3

u3

)
− γ21rM1u2

1 + (v2 + 1 + γM2)u1 + (v2 + r)M1

≤ −v2

(
u1 + u2 +

1
v3

u3

)
+ Q, (2.26)

where 
M1 = erθ,

M2 =
(v2 + r)erθ

v2
,

Q =
−4γ21rM1

2(v2 + r) − (v2 + 1 + γM2)2

−4γ21rM1
.

Stemming from Eq (2.26), it is deduced that

W2(t) ≤
Q
v2
. (2.27)

By Eq (2.28), we obtain

W2(t)→
Q
v2
, when t → ∞. (2.28)

Consequently, every solution to the system (1.3) is consistently limited.

3. Bifurcation analysis

This part delves into examining the bifurcation and stability aspects of model (1.3). Initially,
our assumption is that E(u1?, u2?, u3?) represents the balance point in model (1.3); subsequently,
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u1?, u2?, u3? adhere to this stipulation:
u1?[1 − u1? − γ12u2

2?] + γu1?u3? = 0,

ru2?[1 − u2? − γ21u2
1?] −

(1 − p)u2?u3?

v1 + (1 − p)u2?
= 0,

u3?

[
−v2 +

v3(1 − p)u2?

v1 + (1 − p)u2?

]
= 0.

(3.1)

Let 
ū1(t) = u1(t) − u1?,

ū2(t) = u2(t) − u2?,

ū3(t) = u3(t) − u3?.

(3.2)

Substituting system (3.2) into system (1.3), we achieve the linear configuration of model (1.3) at
E(u1?, u2?, u3?) (denote ū1 as u1, ū2 as u2,ū3 as u3)

du1

dt
= b1u1 + b2u2 + b3u3 + b4u1(t − θ),

du2

dt
= b5u1 + b6u2 + b7u3 + b8u2(t − θ),

du3

dt
= b9u2 + b10u3,

(3.3)

where 

b1 = 1 − u1? − γ12u2
2? − γu3?,

b2 = −2γ12u1?u2?,

b3 = −γu1?,

b4 = −u1?,

b5 = −2rγ21u1?u2?,

b6 = r − ru2? − rγ21u2
1? −

(1 − p)u3?

v1 + (1 − p)u2?
+

(1 − p)2u2?u3?

[v1 + (1 − p)u2?]2 ,

b7 = −
(1 − p)u2?

v1 + (1 − p)u2?
,

b8 = −ru2?,

b9 =
v3(1 − p)u3?

v1 + (1 − p)u2?
−

v3(1 − p)2u2?u3?

[v1 + (1 − p)u2?]2 ,

b10 =
v3(1 − p)u2?

v1 + (1 − p)u2?
− v2.

(3.4)

The characteristic Eq (3.3) of the system owns the following expressions:

det


λ − b1 − b4e−λθ −b2 −b3

−b5 λ − b6 − b8e−λθ −b7

0 −b9 λ − b10

 = 0, (3.5)

which leads to

λ3 + c1λ
2 + c2λ + c3 + (c4λ

2 + c5λ + c6)e−λθ + (c7λ + c8)e−2λθ = 0, (3.6)
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where 

c1 = −b1 − b6 − b10,

c2 = b1b6 + b1b10 − b2b5 + b6b10 − b7b9,

c3 = b1b7b9 − b1b6b10 + b2b5b10 − b3b5b9,

c4 = −b4 − b8,

c5 = b1b8 + b4b6 + b4b10 + b8b10,

c6 = b4b7b9 − b1b8b10 − b4b6b10,

c7 = b4b8,

c8 = −b4b8b10.

(3.7)

If θ = 0, then Eq (3.6) becomes

λ3 + (c1 + c4)λ2 + (c2 + c5 + c7)λ + (c3 + c6 + c8) = 0. (3.8)

If

(A1)


c1 + c4 > 0,
c3 + c6 + c8 > 0,
(c1 + c4)(c2 + c5 + c7) > c3 + c6 + c8,

is fulfilled, then the three roots λ1, λ2, λ3 of Eq (3.8) have negative real parts. Thus, the equilibrium
point E(u1?, u2?, u3?) of system (1.3) with θ = 0 is locally asymptotically stable.

Assume that λ = iε is the root of Eq (3.6), then Eq (3.6) becomes

− c4ε
2 + c5iε + c6 + (−ε3i − c1ε

2 − c2iε + c3)eiεθ + (c7iε + c8)e−iεθ = 0. (3.9)

It follows from (3.9) that {
F1 sin(εθ) + F2 cos(εθ) = F3,

F4 sin(εθ) + F5 cos(εθ) = F6,
(3.10)

where 

F1 = ε3 + g1ε,

F2 = −c1ε
2 + g2,

F3 = c4ε
2 − c6,

F4 = −c1ε
2 + g3,

F5 = −ε3 + g4ε,

F6 = −c5ε,

(3.11)

and 
g1 = c7 − c2,

g2 = c3 + c8,

g3 = c3 − c8,

g4 = c2 + c7.

(3.12)

It follows from (3.10) that 
sin(εθ) =

F2F6 − F3F5

F2F4 − F1F5
,

cos(εθ) =
F3F4 − F1F6

F2F4 − F1F5
.

(3.13)
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Because of sin2(εθ) + cos2(εθ) = 1, we can get[
F2F6 − F3F5

F2F4 − F1F5

]2

+

[
F3F4 − F1F6

F2F4 − F1F5

]2

= 1. (3.14)

So,

F2
3F2

5 + F2
2F2

6 + F2
1F2

6 + F2
3F2

4 − F2
1F2

5 − F2
2F2

4

−2F2F3F5F6 − 2F1F3F4F6 + 2F1F2F4F5 = 0. (3.15)

Using (3.11) and (3.15), we know

− ε12 + D1ε
10 + D2ε

8 + D3ε
6 + D4ε

4 + D5ε
2 + D6 = 0. (3.16)

Therefore, the results can be obtained as follows:

ε12 − D1ε
10 − D2ε

8 − D3ε
6 − D4ε

4 − D5ε
2 − D6 = 0, (3.17)

where 

D1 = c2
4 − 2g4 − 2g1 − 2c2

1,

D2 = −2c2
4g4 − 2c4c6 + c2

5 + c2
1c2

4 − g2
4 + 4g1g4

− g2
1 − c4

1 + 2c2
1g4 + 2c1g3 + 2c1g2 − 2c2

1g1,

D3 = c2
4g2

4 + 4c4c6g4 + c2
6 + c2

1c2
5 + 2c2

5g1 − 2c1c2
4g3 − 2c2

1c4c6 − 2g1g2
4

+ 2g2
1g4 + 2c3

1g3 + 2c3
1g2 − 2c1c4c5g4 − 2c4c5g2 − 2c1c4c5g1 + 2c4c5g3

− 2c1g3g4 + 2(g2 − c1g1)(−c1g4 − g3) + 2c1g1g2,

D4 = −2c4c6g2
4 − 2c2

6g4 − 2c1c2
5g2 + c2

5g2
1 + c2

4g2
3 + 4c1c4c6g3 + c2

1c2
6 − g2

1g2
4

− c2
1g2

3 − 4c2
1g2g3 − c2

1g2
2 + 2c5g4(c1c6 + c4g2) + 2c5c6g2 + 2c1c5c6g1

+ 2c5g3(c4g1 − c6) + 2g3g4(g2 − c1g1) + 2g1g2(−c1g4 − g3),
D5 = c2

6g2
4 + c2

5g2
2 − 2c4c6g2

3 − 2c1c2
6g3 + 2c1g2g2

3 + 2c1g2
2g3 − 2c5c6g2g4

− 2c5c6g1g3 + 2g1g2g3g4,

D6 = c2
6g2

3 − g2
2g2

3.

(3.18)

Let
<1(ε) = ε12 − D1ε

10 − D2ε
8 − D3ε

6 − D4ε
4 − D5ε

2 − D6. (3.19)

Assume that
(A2) |c6| > |g2|.

By virtue of (A2), we know <1(0) = −(c2
6g2

3 − g2
2g2

2) < 0, and since lim
ε→∞
<1(ε) > 0, then we will

know Eq (3.17) has at least one positive real root. Therefore Eq (3.6) has at least one pair of pure
roots. Without loss of generality, we can assume that Eq (3.17) has twelve positive real roots (say,
ε j, j = 1, 2, 3, · · · , 12). Relying on (3.12), we know

θ(n)
j =

1
ε j

[
arccos

(
F?

3 F?
4 − F?

1 F?
6

F?
2 F?

4 − F?
1 F?

5

)
+ 2nπ

]
, (3.20)
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where j = 1, 2, · · · , 12; n = 0, 1, 2, · · · ; 

F?
1 = ε3

j + g1ε j,

F?
2 = −c1ε

2
j + g2,

F?
3 = c4ε

2
j − c6,

F?
4 = −c1ε

2
j + g3,

F?
5 = −ε3

j + g4ε j,

F?
6 = −c5ε j.

(3.21)

Assume θ0 = min{ j=1,2,··· ,12;n=0,1,2,··· }{θ
(n)
j } and suppose that when θ = θ0, Eq (3.6) has a pair of imaginary

roots ±iε0. Next we present the following assumption:

(A3) G1RG2R + G1IG2I > 0,

where 
G1R = −2c1ε0 sin(ε0θ0) − (3ε2

0 − c2 − c7) cos(ε0θ0),
G1I = (−3ε2

0 + c2 − c7) sin(ε0θ0) + 2c1ε0 cos(ε0θ0),
G2R = (−c1ε

3
0 + c3ε0 + c8ε0) sin(ε0θ0) + (−ε4

0 + c2ε
2
0 − c7ε

2
0) cos(ε0θ0),

G2I = (−ε4
0 + c2ε

2
0 + c7ε

2
0) sin(ε0θ0) + (c1ε

3
0 − c3ε0 + c8ε0) cos(ε0θ0).

(3.22)

Lemma 3.1. Suppose that λ(θ) = ε1(θ) + iε2(θ) is the root of Eq (3.6) at θ = θ0 such that ε1(θ0) = 0,
ε2(θ0) = ε0, then Re

(
dλ
dθ

) ∣∣∣∣
θ=θ0,ε=ε0

> 0.

Proof. By Eq (3.6), we can get

(3λ2 + 2c1λ + c2)eλθ
dλ
dθ

+ (λ3 + c1λ
2 + c2λ + c3)eλθ

(
dλ
dθ
θ + λ

)
+c7e−λθ

dλ
dθ
− (c7λ + c8)e−λθ

(
dλ
dθ
θ + λ

)
+ (2c4λ + c5)

dλ
dθ

= 0. (3.23)

It means that (
dλ
dθ

)−1

=
G1(λ)
G2(λ)

−
θ

λ
, (3.24)

where {
G1(λ) = (3λ2 + 2c1λ + c2)eλθ + c7e−λθ,
G2(λ) = (c7λ + c8)λe−λθ − (λ3 + c1λ

2 + c2λ + c3)λeλθ.
(3.25)

Hence

Re
(dλ

dθ

)−1
θ=θ0,ε=ε0

= Re
[
G1(λ)
G2(λ)

]
θ=θ0,ε=ε0

=
G1RG2R + G1IG2I

G2
2R + G2

2I

. (3.26)

By the assumption (A3), we get

Re
(dλ

dθ

)−1
θ=θ0,ε=ε0

> 0. (3.27)

This concludes the proof. According to the preceding reasoning, the following result is simply deduced.
Theorem 3.1. Assume that (A1)–(A3) hold, then the equilibrium point E(u1?, u2?, u3?) of model (1.3)
holds a locally asymptotically stable state if θ ∈ [0, θ0) and model (1.3) generates Hopf bifurcations
around the equilibrium point E(u1?, u2?, u3?) when θ = θ0.
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4. Bifurcation domination using extended hybrid controller I

Motivated by the works of [30,32–34], we design the hybrid controller in Sections 4 and 5. In
fact, we add a perturbation by adjusting the rate of change of population and then we can check
the controllability via theoretical analysis and computer simulations. In this part, we will look at
the Hopf bifurcation control issue in system (1.3) using a suitable hybrid controller that combines
state feedback and parameter perturbation with delay. Using the ideas from [30,32], we achieve the
following controlled 3D Lotka-Volterra commensal symbiosis system:

du1(t)
dt

= δ1[u1(t)(1 − u1(t − θ) − γ12u2
2(t)) + γu1(t)u3(t)] + δ2[u1(t) − u1(t − θ)],

du2

dt
= ru2(t)[1 − u2(t − θ) − γ21u2

1(t)] −
(1 − p)u2(t)u3(t)
v1 + (1 − p)u2(t)

,

du3

dt
= u3(t)

[
−v2 +

v3(1 − p)u2(t)
v1 + (1 − p)u2(t)

]
,

(4.1)

where δ1, δ2 stands for feedback gain parameters. Systems (4.1) and (1.3) own the same equilibrium
points E(u1?, u2?, u3?). Let 

u1(t) = ū1(t) + u1?,

u2(t) = ū2(t) + u2?,

u3(t) = ū3(t) + u3?,

(4.2)

denote ū1 as u1, ū2 as u2,ū3 as u3, and the linear system of system (4.1) around E(u1?, u2?, u3?) takes
the following expression: 

du1

dt
= d1u1 + d2u2 + d3u3 + d4u1(t − θ),

dū2

dt
= d5u1 + d6u2 + d7u3 + d8u2(t − θ),

du3

dt
= d9u2 + d10u3,

(4.3)

where 

d1 = (1 − u1? − γ12u2
2? − γu3?)δ1 + δ2,

d2 = −2γ12u1?u2?δ1,

d3 = −γu1?δ1,

d4 = −δ1u1? − δ2,

d5 = −2rγ21u1?u2?,

d6 = r − ru2? − rγ21u2
1? −

(1 − p)u3?

v1 + (1 − p)u2?
+

(1 − p)2u2?u3?

[v1 + (1 − p)u2?]2 ,

d7 = −
(1 − p)u2?

v1 + (1 − p)u2?
,

d8 = −ru2?,

d9 =
v3(1 − p)u3?

v1 + (1 − p)u2?
−

v3(1 − p)2u2?u3?

[v1 + (1 − p)u2?]2 ,

d10 =
v3(1 − p)u2?

v1 + (1 − p)u2?
− v2.

(4.4)
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The following expression is owned by the system (4.4),s characteristic equation:

det


λ − d1 − d4e−λθ −d2 −d3

−d5 λ − d6 − d8e−λθ −d7

0 −d9 λ − d10

 = 0, (4.5)

which leads to

λ3 + h1λ
2 + h2λ + h3 + (h4λ

2 + h5λ + h6)e−λθ + (h7λ + h8)e−2λθ = 0, (4.6)

where 

h1 = −d1 − d6 − d10,

h2 = d1d6 + d1d10 − d2d5 + d6d10 − d7d9,

h3 = d1d7d9 − d1d6d10 + d2d5d10 − d3d5d9,

h4 = −d4 − d8,

h5 = d1d8 + d4d6 + d4d10 + d8d10,

h6 = d4d7d9 − d1d8d10 − d4d6d10,

h7 = d48,

h8 = −d4d8d10.

(4.7)

If θ = 0, then Eq (4.6) reads as:

λ3 + (h1 + h4)λ2 + (h2 + h5 + h7)λ + (h3 + h6 + h8) = 0. (4.8)

If

(A4)



∆1 = h1 + h4 > 0,

∆2 =

∣∣∣∣∣∣ h1 + h4 1
h3 + h6 + h8 h2 + h5 + h7

∣∣∣∣∣∣ > 0,

∆3 =

∣∣∣∣∣∣∣∣∣
h1 + h4 1 0

h3 + h6 + h8 h2 + h5 + h7 h1 + h4

0 0 h3 + h6 + h8

∣∣∣∣∣∣∣∣∣ > 0,

holds, then the three roots λ1, λ2, λ3 of Eq (4.8) have negative real portions. Thus, the equilibrium point
E(u1?, u2?, u3?) of model (4.1) remains locally asymptotically stable at θ = 0. From (4.6), we can get

h4λ
2 + h5λ + h6 + (λ3 + h1λ

2 + h2λ + h3)eλθ + (h7λ + h8)e−λθ = 0. (4.9)

Suppose that λ = iζ is the root of Eq (4.9). Then, Eq (4.9) takes

h4(iζ)2 + h5(iζ) + h6 + [(iζ)3 + h1(iζ)2 + h2(iζ) + h3]eiζθ + [h7(iζ) + h8]e−iζθ = 0, (4.10)

which results in

h4(iζ)2 + h5(iζ) + h6 + [(iζ)3 + h1(iζ)2 + h2(iζ) + h3][cos(ζθ) + i sin(ζθ)]
+[h7(iζ) + h8][cos(ζθ) − i sin(ζθ)] = 0. (4.11)

It follows from (4.11) that {
H1 sin(ζθ) + H2 cos(ζθ) = H3,

H4 sin(ζθ) + H5 cos(ζθ) = H6,
(4.12)
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where 

H1 = ζ3 + j1ζ,

H2 = −h1ζ
2 + j2,

H3 = h4ζ
2 − h6,

H4 = −h1ζ
2 + j3,

H5 = −ζ3 + j4ζ,

H6 = −h5ζ,

(4.13)

and 
j1 = h7 − h2,

j2 = h3 + h8,

j3 = h3 − h8,

j4 = h2 + h7.

(4.14)

It follows from Cramers rule that 
sin(ζθ) =

H2H6 − H3H5

H2H4 − H1H5
,

cos(ζθ) =
H3H4 − H1H6

H2H4 − H1H5
.

(4.15)

In view of cos2(ζθ) + sin2(ζθ) = 1, we get[
H2H6 − H3H5

H2H4 − H1H5

]2

+

[
H3H4 − H1H6

H2H4 − H1H5

]2

= 1. (4.16)

Then,

H2
3 H2

5 +2
H H2

6 + H2
1 H2

6 + H2
3 H2

4 − H2
1 H2

5 − H2
2 H2

4

−2H2H3H5H6 − 2H1H3H4H6 + 2H1H2H4H5 = 0. (4.17)

Using (4.13) and (4.17), we know

ζ12 − I1ζ
10 − I2ζ

8 − I3ζ
6 − I4ζ

4 − I5ζ
2 − I6 = 0, (4.18)

where 

I1 = h2
4 − 2 j4 − 2 j1 − 2h2

1,

I2 = −2h2
4 j4 − 2h4h6 + h2

5 + h2
1h2

4 − j2
4 + 4 j1 j4

− j2
1 − h4

1 + 2h2
1 j4 + 2h1 j3 + 2h1 j2 − 2h2

1 j1,

I3 = h2
4 j2

4 + 4h4h6 j4 + h2
6 + h2

1h2
5 + 2h2

5 j1 − 2h1h2
4 j3 − 2h2

1h4h6 − 2 j1 j2
4

+ 2 j2
1 j4 + 2h3

1 j3 + 2h3
1 j2 − 2h1h4h5 j4 − 2h4h5 j2 − 2h1h4h5 j1 + 2h4h5 j3

− 2h1 j3 j4 + 2( j2 − h1 j1)(−h1 j4 − j3) + 2h1 j1 j2,

I4 = −2h4h6 j2
4 − 2h2

6 j4 − 2h1h2
5 j2 + h2

5 j2
1 + h2

4 j2
3 + 4h1h4h6 j3 + h2

1h2
6 − j2

1 j2
4

− h2
1 j2

3 − 4h2
1 j2 j3 − h2

1 j2
2 + 2h5 j4(h1h6 + h4 j2) + 2h5h6 j2 + 2h1h5h6 j1

+ 2h5 j3(h4 j1 − h6) + 2 j3 j4( j2 − h1 j1) + 2 j1 j2(−h1 j4 − j3),
I5 = h2

6 j2
4 + h2

5 j2
2 − 2h4h6 j2

3 − 2h1h2
6 j3 + 2h1 j2 j2

3 + 2h1 j2
2 j3 − 2h5h6 j2 j4

− 2h5h6 j1 j3 + 2 j1 j2 j3 j4,

I6 = h2
6 j2

3 − j2
2 j2

3.

(4.19)
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Let
<2(ζ) = ζ12 − I1ζ

10 − I2ζ
8 − I3ζ

6 − I4ζ
4 − I5ζ

2 − I6. (4.20)

Suppose that
(A5) |h6| > | j2|

holds, noticing that limζ→+∞<2(ζ) = +∞ > 0, then we find that Eq (4.18) owns at least one positive
real root. Thus, Eq (4.6) owns at least one pair of pure roots. Without loss of generality, here we assume
that Eq (4.18) admits twelve positive real roots (say, ζι, ι = 1, 2, 3, · · · , 12). According to (4.15), one
gets

θ(k)
l =

1
ζl

[
arccos

(
H?

3 (ζl)H?
4 (ζl) − H?

1 (ζl)H?
6 (ζl)

H?
2 (ζl)H?

4 (ζl) − H?
1 (ζl)H?

5 (ζl)

)
+ 2kπ

]
, (4.21)

where ι = 1, 2, 3, · · · 12; k = 0, 1, 2 · · · ;

H?
1 (ζl) = ζ3

l + j1ζl,

H?
2 (ζl) = −h1ζ

2
l + j2,

H?
3 (ζl) = h4ζ

2
l − h6,

H?
4 (ζl) = −h1ζ

2
l + j3,

H?
5 (ζl) = −ζ3

l + j4ζl,

H?
6 (ζl) = −h5ζl.

(4.22)

Denote θ? = min{ι=1,2,3,··· ,12;k=0,1,2,··· }{θ
(k)
ι } and suppose that when θ = θ?, (4.6) owns a pair of imaginary

roots ±iζ0.
Now, the following condition is presented:

(A6) Q1RQ2R + Q1IQ2I > 0,

where 
Q1R = −2h1ζ0 sin(ζ0θ?) − (3ζ2

0 − h2 − h7) cos(ζ0θ?),
Q1I = (−3ζ2

0 + h2 − h7) sin(ζ1θ?) + 2h1ζ0 cos(ζ0θ?),
Q2R = (−h1ζ

3
0 + h3ζ0 + h8ζ0) sin(ζ0θ?) + (−ζ4

0 + h2ζ
2
0 − h7ζ

2
0 ) cos(ζ0θ?),

Q2I = (−ζ4
0 + h2ζ

2
0 + h7ζ

2
0 ) sin(ζ0θ?) + (h1ζ

3
0 − h3ζ0 + h8ζ0) cos(ζ0θ?).

(4.23)

Lemma 4.1. Let λ(θ) = η1(θ) + iη2(θ) be the root of Eq. (4.9) at θ = θ? obeying η1(θ?) = 0, η2(θ?) = ζ0,
then Re

(
dλ
dθ

) ∣∣∣∣
θ=θ?,ζ=ζ0

> 0.

(3λ2 + 2h1λ + h2)eλθ
dλ
dθ

+ (λ3 + h1λ
2 + h2λ + h3)eλθ

(
dλ
dθ
θ + λ

)
+h7e−λθ

dλ
dθ
− (h7λ + h8)e−λθ

(
dλ
dθ
θ + λ

)
+ (2h4λ + h5)

dλ
dθ

= 0, (4.24)

which leads to (
dλ
dθ

)−1

=
Q1(λ)
Q2(λ)

−
θ

λ
, (4.25)

where {
Q1(λ) = (3λ2 + 2h1λ + h2)eλθ + h7e−λθ,
Q2(λ) = (h7λ + h8)λe−λθ − (λ3 + h1λ

2 + h2λ + h3)λeλθ.
(4.26)
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Hence,

Re
(dλ

dθ

)−1
θ=θ?,ζ=ζ0

= Re
[
Q1(λ)
Q2(λ)

]
θ=θ?,ζ=ζ0

=
Q1RQ2R + Q1IQ2I

Q2
2R + Q2

2I

. (4.27)

By (A6), one gets

Re
(dλ

dθ

)−1
θ=θ?,ζ=ζ0

> 0, (4.28)

which completes the proof.

Based on the study above, the following conclusion is lightly acquired.

Theorem 4.1. Suppose that (A4)–(A6) hold, then the equilibrium point E(u1?, u2?, u3?) of model (4.1)
holds locally asymptotically stable if θ ∈ [0, θ?) and model (4.1) produces Hopf bifurcations at the
equilibrium point E(u1?, u2?, u3?) when θ = θ?.

5. Bifurcation domination using extended hybrid controller II

In this part, we will investigate the Hopf bifurcation problem of system (1.3) using a suitable
extended delayed feedback controller consisting of parameter perturbation with delay. In accordance
with [33,34], we propose the following controlled predator-prey model:

du1(t)
dt

= ρ1[u1(t)(1 − u1(t − θ) − γ12u2
2(t)) + γu1(t)u3(t)] + ρ2[u1(t) − u1(t − θ)],

du2

dt
= ru2(t)[1 − u2(t − θ) − γ21u2

1] −
(1 − p)u2u3

v1 + (1 − p)u2
,

du3

dt
= ρ3u3[−v2 +

v3(1 − p)u2

v1 + (1 − p)u2
] + ρ4[u3(t) − u3(t − θ)],

(5.1)

where ρ1 − ρ4 stands for feedback gain parameters. System (5.1) owns the same equilibrium point
E(u1?, u2?, u3?) as that of system (1.3). Let

u1(t) = ū1(t) + u1?,

u2(t) = ū2(t) + u2?,

u3(t) = ū3(t) + u3?,

(5.2)

denote ū1 as u1, ū2 as u2,ū3 as u3, and the linear system of system (5.1) around E(u1?, u2?, u3?) takes
the following expression:



du1

dt
= f1u1 + f2u2 + f3u3 + f4u1(t − θ),

du2

dt
= f5u1 + f6u2 + f7u3 + f8u2(t − θ),

du3

dt
= f9u2 + f10u3 + f11u3(t − θ),

(5.3)
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where 

f1 = (1 − u1? − γ12u2
2? − γu3?)ρ1 + ρ2,

f2 = −2γ12u1?u2?ρ1,

f3 = −γu1?ρ1,

f4 = −ρ1u1? − ρ2,

f5 = −2rγ21u1?u2?,

f6 = r − ru2? − rγ21u2
1? −

(1 − p)u3?

v1 + (1 − p)u2?
+

(1 − p)2u2?u3?

[v1 + (1 − p)u2?]2 ,

f7 = −
(1 − p)u2?

v1 + (1 − p)u2?
,

f8 = −ru2?,

f9 =

(
v3(1 − p)u3?

v1 + (1 − p)u2?
−

v3(1 − p)2u2?u3?

[v1 + (1 − p)u2?]2

)
ρ3,

f10 =

(
ρ4 − v2 +

v3(1 − p)u2?

v1 + (1 − p)u2?

)
ρ3,

f11 = −ρ4.

(5.4)

The characteristic equation of system (5.3) owns the following expression:

det


λ − f1 − d4e−λθ − f2 − f3

− f5 λ − f6 − f8e−λθ − f7

0 − f9 λ − f10 − f11e−λθ

 = 0, (5.5)

which leads to

λ3 + m1λ
2 + m2λ + m3 + (m4λ

2 + m5λ + m6)e−λθ + (m7λ + m8)e−2λθ + m9e−3λθ = 0, (5.6)

that is,

(λ3 + m1λ
2 + m2λ + m3)e2λθ + (m4λ

2 + m5λ + m6)eλθ + m9e−λθ + m7λ + m8 = 0, (5.7)

where 

m1 = − f1 − f6 − f10,

m2 = f1 f6 + f1 f10 − f2 f5 + f6 f10 − f7 f9,

m3 = f1 f7 f9 − f1 f6 f10 + f2 f5 f10 − f3 f5 f9,

m4 = − f4 − f8 − f11,

m5 = f1 f8 + f4 f6 + f4 f10 + f8 f10 + f1 f11 + f6 f11,

m6 = f4 f7 f9 − f1 f8 f10 − f4 f6 f10 + f1 f6 f11 + f2 f5 f11,

m7 = f4 f8 + f4 f11 + f8 f11,

m8 = − f4 f8 f10 − f4 f6 f10 − f4 f6 f11 − f1 f8 f11,

m9 = − f4 f8 f11.

(5.8)

If δ = 0, then Eq (5.6) reads as:

λ3 + (m1 + m4)λ2 + m3 + (m2 + m5 + m7) + m3 + m6 + m8 + m9 = 0. (5.9)
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If

(A7)



∇1 = m1 + m4 > 0,

∇2 =

∣∣∣∣∣∣ m1 + m4 1
m3 + m6 + m8 + m9 m2 + m5 + m7

∣∣∣∣∣∣ > 0,

∇3 =

∣∣∣∣∣∣∣∣∣
m1 + m4 1 0

m3 + m6 + m8 + m9 m2 + m5 + m7 m1 + m4

0 0 m3 + m6 + m8 + m9

∣∣∣∣∣∣∣∣∣ > 0,

is fulfilled, the three roots of Eq (5.6), λ1, λ2, λ3, have negative real components. Therefore, the
equilibrium point E(u1?, u2?, u3?) of system (5.1) with θ = 0 is locally asymptotically stable.

Suppose that λ = iω is the root of Eq (5.7), then Eq (5.7) becomes:

[(iω)3 + m1(iω)2 + m2(iω) + m3]e2iωθ + [m4(iω)2 + m5(iω) + m6)]eiωθ

+m9e−iωθ + m7(iω) + m8 = 0. (5.10)

By (5.10), we have
(
ω3 − m2ω

)
sin(2ωθ) +

(
−m1ω

2 + m3

)
cos(2ωθ) − m5ω sin(ωθ)

+(m6 + m9 − m4ω
2) cos(ωθ) + m8 = 0,(

m2ω − ω
3
)

cos(2ωθ) +
(
−m1ω

2 + m3

)
sin(2ωθ) + m5ω cos(ωθ)

+(m6 − m9 − m4ω
2) sin(ωθ) + m7ω = 0,

(5.11)

and from (5.11), we can get

M1cos2(ωθ) + M2 cos(ωθ) + M3 = (M4 + M5 cos(ωθ))
√

1 − cos2(ωθ), (5.12)

where 

M1 = −2m1ω
2 + 2m3,

M2 = m6 + m9 − m4ω
2,

M3 = m1ω
2 − m3 + m8,

M4 = m5ω,

M5 = 2m2ω − 2ω3.

(5.13)

So, we can get

N1cos4(ωθ) + N2cos3(ωθ) + N3cos2(ωθ) + N4 cos(ωθ) + N5 = 0, (5.14)

where 

N1 = M2
1 + M2

5 ,

N2 = 2M1M2 + 2M4M5,

N3 = 2M1M3 + M2
2 + M2

4 − M2
5 ,

N4 = 2M1M3 + 2M4M5,

N5 = M2
3 + M2

4 .

(5.15)

From (5.14), we can suppose that cos(ωθ) = y, and we have

N1y4 + N2y3 + N3y2 + N4y + N5 = 0. (5.16)
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According to the computer software, we can get

cos(ωiθi) = yi(i = 1, 2, 3, 4). (5.17)

It follows from (5.17) that

θ(n)
t =

1
ωt

[arccos yt + 2nπ], (5.18)

where t = 1, 2, 3, 4; n = 0, 1, 2, 3, · · · .
Let θ? = min{t=1,2,3,4;n=1,2,3,··· }{θ

(n)
t }, and assume that when θ = θ?, Eq (5.6) has at least one pair of

pure real roots ±iω0. Next, the following assumption is needed:

(A8) T1RT2R + T1IT2I > 0,

where 

T1R = (−3ω2
0 + m2) cos(2ω0θ

?) − 2m1ω0 sin(2ω0θ
?)

+ m5 cos(ω0θ
?) − 2m4ω0 sin(ω0θ

?) + m7,

T1I = (−3ω2
0 + m2) sin(2ω0θ

?) + 2m1ω0 cos(2ω0θ
?)

+ m5 sin(ω0θ
?) + 2m4ω0 cos(ω0θ

?),
T2R = (−2ω4

0 + 2m2ω
2
0) cos(2ω0θ

?) − (2m1ω
3
0 − 2m3ω0) sin(2ω0θ

?)
+ m5ω

2
0 cos(ω0θ

?) + (m9ω0 − m4ω
3
0 + m6ω0) sin(ω0θ

?),
T2I = (−2ω4

0 + 2m2ω
2
0) sin(2ω0θ

?) + (2m1ω
3
0 − 2m3ω0) cos(2ω0θ

?)
+ m5ω

2
0 sin(ω0θ

?) + (m9ω0 + m4ω
3
0 − m6ω0) cos(ω0θ

?).

(5.19)

Lemma 5.1. Suppose that λ(θ) = ψ1(θ) + iψ2(θ) is the root of Eq (5.7) at θ = θ? such that ψ1(θ?) = 0
,ψ2(θ?) = ω0 , then Re

(
dλ
dθ

) ∣∣∣∣
θ=θ?,ω=ω0

> 0.
Proof. By Eq (5.7), one gets

(3λ2 + 2m1λ + m2)e2λθ dλ
dθ

+ (λ3 + m1λ
2 + m2λ + m3)e2λθ

(
dλ
dθ

2θ + 2λ
)

+(2m4λ + m5)eλθ
dλ
dθ

+ (m4λ
2 + m5λ + m6)eλθ

(
dλ
dθ
θ + λ

)
+ m7

dλ
dθ

−m9e−λθ
(
dλ
dθ
θ + λ

)
= 0, (5.20)

which implies (
dλ
dθ

)−1

=
T1(λ)
T2(λ)

−
θ

λ
, (5.21)

where {
T1(λ) = (3λ2 + 2m1λ + m2)e2λθ + (2m4λ + m5)eλθ + m7,

T2(λ) = −λ[2(λ3 + m1λ
2 + m2λ + m3)e2λθ + (m4λ

2 + m5λ + m6)eλθ − m9e−λθ].
(5.22)

Hence

Re
(dλ

dθ

)−1
θ=θ?,ω=ω0

= Re
[
T1(λ)
T2(λ)

]
θ=θ?,ω=ω0

=
T1RT2R + T1IT2I

T 2
2R + T 2

2I

. (5.23)
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By (A8), we have

Re
(dλ

dθ

)−1
θ=θ?,ω=ω0

> 0, (5.24)

which concludes the proof.

Based on the research presented above, the following conclusion is loosely drawn.

Theorem 5.1. Suppose that (A7)−(A8) hold, then the equilibrium point E(u1?, u2?, u3?) of model (5.1)
is locally asymptotically stable if θ ∈ [0, θ?) and model (5.1) generates Hopf bifurcations at the
equilibrium point E(u1?, u2?, u3?) when θ = θ?.

Remark 5.1. In Section 4, the controller is called the hybrid controller that includes state feedback and
parameter perturbation with delay. This controller is only added to the first equation of system (1.3).
In Section 5, the controller is called the extended hybrid controller that includes state feedback and
parameter perturbation with delay. This controller is added to the first equation and the third equation
of system (1.3). Hybrid controller II owns more control parameters than those in hybrid controller I and
has greater adjustment flexibility in controlling the stability domain and the onset of Hopf bifurcation
of system (1.3).

6. Software experiments

Example 6.1. Think about the following Lotka-Volterra commensal symbiosis system:



du1(t)
dt

= u1(t)(1 − u1(t − θ) − 1.1u2
2(t)) + 0.04u1(t)u3(t),

du2(t)
dt

= 0.5u2(t)(1 − u2(t − θ) − 0.3u2
1(t)) −

(1 − 0.1)u2(t)u3(t)
0.2 + (1 − 0.1)u2(t)

,

du3(t)
dt

= u3(t)(−0.35 +
0.5(1 − 0.1)u2(t)

0.2 + (1 − 0.1)u2(t)
).

(6.1)

It is straightforward to see that system (6.1) has a single positive equilibrium point
E(0.7092, 0.5185, 0.1224). One can easily verify that the conditions (A1)–(A3) of Theorem 3.1 hold
true. Using Matlab software, we can obtain θ0 ≈ 1.3. To validate the accuracy of Theorem 3.1, we use
two distinct delay values: θ = 0.8 and θ = 1.9. For θ = 0.8 < θ0 ≈ 1.3, simulation graphs are provided
in Figure 1. Figure 1 shows that u1 → 0.7092, u2 → 0.5185, u3 → 0.1224 as t → +∞. In this case, the
equilibrium point E(0.7092, 0.5185, 0.1224) of model (6.1) has a locally asymptotically stable state.
For θ = 1.9 > θ0 ≈ 1.3, we receive simulation graphs, as shown in Figure 2. Figure 2 shows that u1

maintains a periodic vibrating level around 0.7092, whereas u2 maintains a level around 0.5185 and u3

maintains a periodic vibrating level around 0.1224. That is, a set of periodic solutions (known as Hopf
bifurcations) arise at the equilibrium point E(0.7092, 0.5185, 0.1224).
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Figure 1. Matlab simulation figures of system (6.1) under the delay θ = 0.8 < θ0 ≈

1.3, and the equilibrium point E(u1∗, u2∗, u3∗) = E(0.7092, 0.5185, 0.1224) holds a locally
asymptotically stable level.
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Figure 2. Matlab simulation figures of system (6.1) with delay θ = 1.9 > θ0 ≈ 1.3, and
a cluster of periodic solutions (i.e., Hopf bifurcations) arise around the equilibrium point
E(E(u1∗, u2∗, u3∗) = E(0.7092, 0.5185, 0.1224).
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Example 6.2. Think about the following controlled Lotka-Volterra commensal symbiosis system:



du1(t)
dt

= δ1[u1(t)(1 − u1(t − θ) − 1.1u2
2(t)) + 0.04u1(t)u3(t)] + δ2[u1(t) − u1(t − θ)],

du2

dt
= 0.5u2(t)[1 − u2(t − θ) − 0.3u2

1(t)] −
(1 − 0.1)u2(t)u3(t)
0.2 + (1 − 0.1)u2(t)

,

du3

dt
= u3(t)

[
−0.35 +

0.5(1 − 0.1)u2(t)
0.2 + (1 − 0.1)u2(t)

]
.

(6.2)

It is straightforward to see that system (6.2) has a single positive equilibrium point
E(0.7092, 0.5185, 0.1224). Let δ1 = 0.5, δ2 = −0.1. One can easily verify that the conditions (A4)–
(A6) of Theorem 4.1 hold true. Using Matlab software, we can obtain θ? ≈ 1.8. To validate the
correctness of the acquired assertions of Theorem 4.1, we use two distinct delay values: θ = 1.6 and
θ = 2.25. For θ = 1.6 < θ? ≈ 1.8, we get simulation diagrams which are presented in Figure 3.
Based on Figure 3, we find that u1 → 0.7092, u2 → 0.5185, u3 → 0.1224 when t → +∞. In other
words, the equilibrium point E(0.7092, 0.5185, 0.1224) of model (6.2) holds a locally asymptotically
stable state. For θ = 2.25 > θ? ≈ 1.8, we get simulation diagrams which are presented in Figure 4.
Based on Figure 4, we find that u1 maintains a periodic vibrating level around 0.7092, whereas u2

maintains a level around 0.5185 and u3 maintains a periodic vibrating level around 0.1224. That is
to say, a family of periodic solutions (namely, Hopf bifurcations) appear near the equilibrium point
E(0.7092, 0.5185, 0.1224).

Example 6.3. Think about the following controlled Lotka-Volterra commensal symbiosis system:



du1(t)
dt

= ρ1[u1(t)(1 − u1(t − θ) − 1.1u2
2(t)) + 0.04u1(t)u3(t)] + ρ2[u1(t) − u1(t − θ)],

du2

dt
= 0.5u2(t)[1 − u2(t − θ) − 0.3u2

1] −
(1 − 0.1)u2u3

0.2 + (1 − 0.1)u2
,

du3

dt
= ρ3u3

[
−0.35 +

0.5(1 − 0.1)u2

0.2 + (1 − 0.1)u2

]
+ ρ4[u3(t) + u3(t − θ)].

(6.3)

It is straightforward to see that system (6.3) has a single positive equilibrium point
E(0.7092, 0.5185, 0.1224). Let ρ1 = 0.5, ρ2 = −0.1, ρ3 = 0.6, ρ4 = −0.1. One can easily verify
that the conditions (A7) and (A8) of Theorem 5.1 hold true. By applying Matlab software, one can
get θ? ≈ 2.20. To validate the correctness of the acquired assertions of Theorem 5.1, we choose both
different delay values: θ = 2.00 and θ = 2.75. For θ = 2.00 < θ? ≈ 2.20, we get simulation diagrams
which are presented in Figure 5. Based on Figure 5, we find that u1 → 0.7092, u2 → 0.5185, u3 →

0.1224 when t → +∞. In other words, the equilibrium point E(0.7092, 0.5185, 0.1224) of model (6.3)
holds a locally asymptotically stable state. For θ = 2.75 > θ? ≈ 2.20, we get simulation diagrams
which are presented in Figure 6. Based on Figure 6, we find that u1 maintains a periodic vibrating level
around 0.7092, whereas u2 maintains a level around 0.5185 and u3 maintains a periodic vibrating level
around 0.1224. That is to say, a family of periodic solutions (namely, Hopf bifurcations) appear near
the equilibrium point E(0.7092, 0.5185, 0.1224).
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Figure 3. Matlab simulation figures of system (6.2) under the delay θ = 1.6 < θ? ≈

1.8, and the equilibrium point E(u1∗, u2∗, u3∗) = E(0.7092, 0.5185, 0.1224) holds a locally
asymptotically stable level.
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Figure 4. Matlab simulation figures of system (6.2) under the delay θ = 2.25 > θ? ≈ 1.8,
and a cluster of periodic solutions (i.e., Hopf bifurcations) arise around the equilibrium point
E(u1∗, u2∗, u3∗) = E(0.7092, 0.5185, 0.1224).
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Figure 5. Matlab simulation figures of system (6.2) under the delay θ = 2.00 < θ? ≈

2.20, and the equilibrium point E(u1∗, u2∗, u3∗) = E(0.7092, 0.5185, 0.1224) holds a locally
asymptotically stable level.
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Figure 6. Matlab simulation figures of system (6.3) under the delay θ = 2.75 > θ? ≈ 2.20,
and a cluster of periodic solutions (i.e., Hopf bifurcations) arise around the equilibrium point
E(u1∗, u2∗, u3∗) = E(0.7092, 0.5185, 0.1224).
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Remark 6.1. It follows from the Matlab simulation results of Examples 6.1–6.3 that one can know
that the bifurcation value of system (6.1) is equal to 1.3, the bifurcation value of system (6.2) is equal
to 1.8 and the bifurcation value of system (6.3) is equal to 2.20, which indicates that we can expand
the domain of stability of system (6.1) and postpone the time of emergence of Hopf bifurcation of
system (6.1) via the formulated two hybrid delayed feedback controllers.

7. Conclusions

It is generally recognized that the delayed dynamical model is an important tool for understanding
the interactions of many biological populations in the natural environment [35–37]. Many
studies on predator-prey models have conducted and yielded numerous results over the last few
decades [38–40]. In this study, we provide a novel delayed Lotka-Volterra commensal symbiosis
model. This paper discusses the uniqueness, nonnegativeness, and boundedness of the delayed Lotka-
Volterra commensal symbiosis solution. The Hopf bifurcation issue is addressed. Then, the critical
delay value θ0 is retrieved. In order to modify the domain of stability and the time of the bifurcation
phenomenon in this model, we have successfully developed two distinct hybrid delayed feedback
controllers. Two critical delay values, θ?, θ?, are acquired. In these two controllers, the role of delay
is displayed. Theoretically, the exploration fruits are very useful for managing and balancing the
populations of two species. Furthermore, the exploratory concepts may be used for other fractional-
order and integer-order dynamical systems in a wide range of disciplines to dominate the bifurcation
phenomena, stability, and chaos [41–43]. During the past decades, many works on this topis is
explored, see [44–46]. In this paper, we only deal with the Hopf bifurcation onset and Hopf bifurcation
control in this paper. We leave the stability and direction of Hopf bifurcation periodic solutions for
future work and we will refer to the works in [47–49]. In addition, we will explore the Hopf bifurcation
of fractional-order dynamical models [50–52].
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