Research article

On the extraction of complex behavior of generalized higher-order nonlinear Boussinesq dynamical wave equation and (1+1)-dimensional Van der Waals gas system

  • Received: 25 July 2024 Revised: 19 September 2024 Accepted: 25 September 2024 Published: 30 September 2024
  • MSC : 35A24, 35A99

  • In this paper, we apply the powerful sine-Gordon expansion method (SGEM), along with a computational program, to construct some new traveling wave soliton solutions for two models, including the higher-order nonlinear Boussinesq dynamical wave equation, which is a well-known nonlinear evolution model in mathematical physics, and the (1+1)-dimensional framework of the Van der Waals gas system. This study presents some new complex traveling wave solutions, as well as logarithmic and complex function properties. The 3D and 2D graphical representations of all obtained solutions, unveiling new properties of the considered model are simulated. Additionally, several simulations, including contour surfaces of the results, are performed, and we discuss their physical implications. A comprehensive conclusion is provided at the end of this paper.

    Citation: Haci Mehmet Baskonus, Md Nurul Raihen, Mehmet Kayalar. On the extraction of complex behavior of generalized higher-order nonlinear Boussinesq dynamical wave equation and (1+1)-dimensional Van der Waals gas system[J]. AIMS Mathematics, 2024, 9(10): 28379-28399. doi: 10.3934/math.20241377

    Related Papers:

  • In this paper, we apply the powerful sine-Gordon expansion method (SGEM), along with a computational program, to construct some new traveling wave soliton solutions for two models, including the higher-order nonlinear Boussinesq dynamical wave equation, which is a well-known nonlinear evolution model in mathematical physics, and the (1+1)-dimensional framework of the Van der Waals gas system. This study presents some new complex traveling wave solutions, as well as logarithmic and complex function properties. The 3D and 2D graphical representations of all obtained solutions, unveiling new properties of the considered model are simulated. Additionally, several simulations, including contour surfaces of the results, are performed, and we discuss their physical implications. A comprehensive conclusion is provided at the end of this paper.



    加载中


    [1] X. Chen, X. Wu, J. Feng, Y. Wang, X. Zhang, Y. Lin, Nonlinear differential equations and their application to evaluating the integrated impacts of multiple parameters on the biochemical safety of drinking water, J. Environ. Manage., 355 (2024), 120493. http://dx.doi.org/10.1016/j.jenvman.2024.120493 doi: 10.1016/j.jenvman.2024.120493
    [2] M. Gu, R. Zhu, X. Yang, H. Wang, K. Shi, Numerical investigation on evaluating nonlinear waves due to an air cushion vehicle in steady motion by a higher order desingularized boundary integral equation method, Ocean Eng., 246 (2022), 110598. http://dx.doi.org/10.1016/j.oceaneng.2022.110598 doi: 10.1016/j.oceaneng.2022.110598
    [3] J. Wang, M. Wang, S. Shen, Y. Guo, L. Fan, F. Ji, Testing the nonlinear equations for dental age evaluation in a population of eastern China, Legal Med., 48 (2021), 101793. http://dx.doi.org/10.1016/j.legalmed.2020.101793 doi: 10.1016/j.legalmed.2020.101793
    [4] I. Ahmed, J. Tariboon, M. Muhammad, M. Ibrahim, A mathematical and sensitivity analysis of an HIV/AIDS infection model, International Journal of Mathematics and Computer in Engineering, 3 (2025), 35–46. http://dx.doi.org/10.2478/ijmce-2025-0004 doi: 10.2478/ijmce-2025-0004
    [5] R. Gweryina, G. Imandeh, E. Idoko, A new mathematical model for transmitting and controlling rat-bite fever using the theory of optimal control, Healthcare Analytics, 3 (2023), 100203. http://dx.doi.org/10.1016/j.health.2023.100203 doi: 10.1016/j.health.2023.100203
    [6] H. Baskonus, T. Sulaiman, H. Bulut, Novel complex and hyperbolic forms to the strain wave equation in microstructured solids, Opt. Quant. Electron., 50 (2018), 14. http://dx.doi.org/10.1007/s11082-017-1279-x doi: 10.1007/s11082-017-1279-x
    [7] A. Esen, B. Karaagac, N. Yagmurlu, Y. Ucar, J. Manafian, A numerical aproach to dispersion-dissipation-reaction model: third order KdV-Burger-Fisher equation, Phys. Scr., 99 (2024), 085260. http://dx.doi.org/10.1088/1402-4896/ad635c doi: 10.1088/1402-4896/ad635c
    [8] A. Houwe, J. Sabi'u, Z. Hammouch, S. Doka, Solitary pulses of a conformable nonlinear differential equation governing wave propagation in low-pass electrical transmission line, Phys. Scr., 95 (2020), 045203. http://dx.doi.org/10.1088/1402-4896/ab5055 doi: 10.1088/1402-4896/ab5055
    [9] B. Gasmi, A. Ciancio, A. Moussa, L. Alhakim, Y. Mati, New analytical solutions and modulation instability analysis for the nonlinear (1+1)-dimensional Phi-four model, International Journal of Mathematics and Computer in Engineering, 1 (2023), 79–90. http://dx.doi.org/10.2478/ijmce-2023-0006 doi: 10.2478/ijmce-2023-0006
    [10] S. Sivasundaram, A. Kumar, R. Singh, On the complex properties of the first equation of the Kadomtsev-Petviashvili hierarchy, International Journal of Mathematics and Computer in Engineering, 2 (2024), 71–84. http://dx.doi.org/10.2478/ijmce-2024-0006 doi: 10.2478/ijmce-2024-0006
    [11] Y. Fu, J. Li, Exact stationary-wave solutions in the standard model of the Kerr-nonlinear optical fiber with the Bragg grating, J. Appl. Anal. Comput., 7 (2017), 1177–1184. http://dx.doi.org/10.11948/2017073 doi: 10.11948/2017073
    [12] S. Leble, N. Ustinov, Darboux transforms deep reductions and solitons, J. Phys. A: Math. Gen., 26 (1993), 5007. http://dx.doi.org/10.1088/0305-4470/26/19/029 doi: 10.1088/0305-4470/26/19/029
    [13] M. Ali Akbar, N. Ali, The improved F-expansion method with Riccati equation and its applications in mathematical physics, Cogent Mathematics, 4 (2017), 1282577. http://dx.doi.org/10.1080/23311835.2017.1282577 doi: 10.1080/23311835.2017.1282577
    [14] Y. Zhao, F-expansion method and its application for finding new exact solutions to the Kudryashov-Sinelshchikov equation, J. Appl. Math., 2013 (2013), 895760. http://dx.doi.org/10.1155/2013/895760 doi: 10.1155/2013/895760
    [15] C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 224 (1996), 77–84. http://dx.doi.org/10.1016/S0375-9601(96)00770-0 doi: 10.1016/S0375-9601(96)00770-0
    [16] J. Guirao, H. Baskonus, A. Kumar, M. Rawat, G. Yel, Complex patterns to the (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation, Symmetry, 12 (2020), 17. http://dx.doi.org/10.3390/sym12010017 doi: 10.3390/sym12010017
    [17] H. Baskonus, H. Bulut, T. Sulaiman, New complex hyperbolic structures to the Lonngren-wave equation by using sine-Gordon expansion method, Applied Mathematics and Nonlinear Sciences, 4 (2019), 129–138. http://dx.doi.org/10.2478/AMNS.2019.1.00013 doi: 10.2478/AMNS.2019.1.00013
    [18] A. Al-Sekhary, K. Gepreel, Exact solutions for nonlinear integro-partial differential equations using the $(\frac{G^{\prime}}{G}, \frac{1}{G})$-expansion method, International Journal of Applied Engineering Research, 14 (2019), 2449–2461.
    [19] H. Bulut, H. Ismael, Exploring new features for the perturbed Chen-Lee-Liu model via $(m+1)/G$-expansion method, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 48 (2022), 164–173. http://dx.doi.org/10.30546/2409-4994.48.1.2022.164 doi: 10.30546/2409-4994.48.1.2022.164
    [20] Y. Chen, R. Liu, Some new nonlinear wave solutions for two $(3+1)$-dimensional equations, Appl. Math. Comput., 260 (2015), 397–411. http://dx.doi.org/10.1016/j.amc.2015.03.098 doi: 10.1016/j.amc.2015.03.098
    [21] S. Jiong, Auxiliary equation method for solving nonlinear partial differential equations, Phys. Lett. A, 309 (2003), 387–396. http://dx.doi.org/10.1016/S0375-9601(03)00196-8 doi: 10.1016/S0375-9601(03)00196-8
    [22] W. Gao, B. Ghanbari, H. Günerhan, H. Baskonus, Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrödinger equation, Mod. Phys. Lett. B, 34 (2020), 2050034. http://dx.doi.org/10.1142/S0217984920500347 doi: 10.1142/S0217984920500347
    [23] W. Gao, H. Rezazadeh, Z. Pinar, H. Baskonus, S. Sarwar, G. Yel, Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Opt. Quant. Electron., 52 (2020), 52. http://dx.doi.org/10.1007/s11082-019-2162-8 doi: 10.1007/s11082-019-2162-8
    [24] S. Batwa, W. Ma, A study of lump-type and interaction solutions to a (3+1)-dimensional Jimbo-Miwa-like equation, Comput. Math. Appl., 76 (2018), 1576–1582. http://dx.doi.org/10.1016/j.camwa.2018.07.008 doi: 10.1016/j.camwa.2018.07.008
    [25] M. Canak, G. Muslu, Error analysis of the exponential wave integrator sine pseudo-spectral method for the higher-order Boussinesq equation, Numer. Algor., in press. http://dx.doi.org/10.1007/s11075-024-01763-6
    [26] M. Alquran, Applying differential transform method to nonlinear partial differential equations: a modified approach, Appl. Appl. Math., 7 (2012), 10.
    [27] M. Mirzazadeh, M. Ekici, M. Eslami, E. Krishnan, S. Kumar, A. Biswas, Solitons and other solutions to Wu-Zhang system, Nonlinear Anal.-Model., 22 (2017), 441–458. http://dx.doi.org/10.15388/NA.2017.4.2 doi: 10.15388/NA.2017.4.2
    [28] M. Mohammad, A. Trounev, C. Cattani, The dynamics of COVID-19 in the UAE based on fractional derivative modeling using Riesz wavelets simulation, Adv. Differ. Equ., 2021 (2021), 115. http://dx.doi.org/10.1186/s13662-021-03262-7 doi: 10.1186/s13662-021-03262-7
    [29] X. Du, B. Tian, Y. Yin, Lump, mixed lump-kink, breather and rogue waves for a B-type Kadomtsev-Petviashvili equation, Wave. Random Complex, 31 (2021), 101–116. http://dx.doi.org/10.1080/17455030.2019.1566681 doi: 10.1080/17455030.2019.1566681
    [30] T. Yin, Z. Xing, J. Pang, Modified Hirota bilinear method to (3+1)-D variable coefficients generalized shallow water wave equation, Nonlinear Dyn., 111 (2023), 9741–9752. http://dx.doi.org/10.1007/s11071-023-08356-3 doi: 10.1007/s11071-023-08356-3
    [31] M. Rani, N. Ahmed, S. Dragomir, New exact solutions for nonlinear fourth-order Ablowitz-Kaup-Newell-Segur water wave equation by the improved $\tanh(\frac{\phi(\xi)}{2})$-expansion method, Int. J. Mod. Phys. B, 37 (2023), 2350044. http://dx.doi.org/10.1142/S0217979223500443 doi: 10.1142/S0217979223500443
    [32] A. Mahmud, T. Tanriverdi, K. Muhamad, Exact traveling wave solutions for (2+1)-dimensional Konopelchenko-Dubrovsky equation by using the hyperbolic trigonometric functions methods, International Journal of Mathematics and Computer in Engineering, 1 (2023), 11–24. http://dx.doi.org/10.2478/ijmce-2023-0002 doi: 10.2478/ijmce-2023-0002
    [33] M. Jahan, M. Ullah, Z. Rahman, R. Akter, Novel dynamics of the Fokas-Lenells model in Birefringent fibers applying different integration algorithms, International Journal of Mathematics and Computer in Engineering, 3 (2025), 1–12. http://dx.doi.org/10.2478/ijmce-2025-0001 doi: 10.2478/ijmce-2025-0001
    [34] H. Baskonus, H. Bulut, D. Emir, Regarding new complex analytical solutions for the nonlinear partial Vakhnenko-Parkes differential equation via Bernoulli sub-equation function method, Mathematics Letters, 1 (2015), 1–9. http://dx.doi.org/10.11648/j.ml.20150101.11 doi: 10.11648/j.ml.20150101.11
    [35] A. Ciancio, H. Baskonus, T. Sulaiman, H. Bulut, New structural dynamics of isolated waves via the coupled nonlinear Maccari's system with complex structure, Indian J. Phys., 92 (2018), 1281–1290. http://dx.doi.org/10.1007/s12648-018-1204-6 doi: 10.1007/s12648-018-1204-6
    [36] Z. Yan, A new sine-Gordon equation expansion algorithm to investigate some special nonlinear differential equations, Chaos Soliton. Fract., 23 (2005), 767–775. http://dx.doi.org/10.1016/j.chaos.2004.05.003 doi: 10.1016/j.chaos.2004.05.003
    [37] S. Chen, Dark and composite rogue waves in the coupled Hirota equations, Phys. Lett. A, 378 (2014), 2851–2856. http://dx.doi.org/10.1016/j.physleta.2014.08.004 doi: 10.1016/j.physleta.2014.08.004
    [38] H. Baskonus, T. Sulaiman, H. Bulut, T. Aktürk, Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrödinger equation with $\delta$-potential, Superlattices and Microstructures, 115 (2018), 19–29. http://dx.doi.org/10.1016/j.spmi.2018.01.008 doi: 10.1016/j.spmi.2018.01.008
    [39] B. Kadomtsev, V. Petviashvili, On the stability of solitary waves in weakly dispersive media (English), Sov. Phys., Dokl., 15 (1970), 539–541.
    [40] M. Al-Amr, S. El-Ganaini, New exact traveling wave solutions of the (4+1)-dimensional Fokas equation, Comput. Math. Appl., 74 (2017), 1274–1287. http://dx.doi.org/10.1016/j.camwa.2017.06.020 doi: 10.1016/j.camwa.2017.06.020
    [41] S. Kumar, A. Kumar, Newly generated optical wave solutions and dynamical behaviors of the highly nonlinear coupled Davey-Stewartson Fokas system in monomode optical fibers, Opt. Quant. Electron., 55 (2023), 566. http://dx.doi.org/10.1007/s11082-023-04825-6 doi: 10.1007/s11082-023-04825-6
    [42] J. Ahmad, S. Akram, S. Ur-Rehman. A. Ali, Analysis of new soliton type solutions to generalized extended (2+1)-dimensional Kadomtsev-Petviashvili equation via two techniques, Ain Shams Eng. J., 15 (2024), 102302. http://dx.doi.org/10.1016/j.asej.2023.102302 doi: 10.1016/j.asej.2023.102302
    [43] A. Adem, C. Khalique, New exact solutions and conservation laws of a coupled Kadomtsev-Petviashvili system, Comput. Fluids, 81 (2023), 10–16. http://dx.doi.org/10.1016/j.compfluid.2013.04.005 doi: 10.1016/j.compfluid.2013.04.005
    [44] P. Xu, H. Huang, H. Liu, Semi-Domain solutions to the fractal (3+1)-dimensional Jimbo-Miwa equation, Fractals, in press. http://dx.doi.org/10.1142/S0218348X24400425
    [45] K. Wang, S. Li, Novel complexiton solutions to the new extended (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for incompressible fluid, EPL, 146 (2024), 62003. http://dx.doi.org/10.1209/0295-5075/ad59c1 doi: 10.1209/0295-5075/ad59c1
    [46] K. Wang, S. Li, Complexiton complex multiple kink soliton and the rational wave solutions to the generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Phys. Scr., 99 (2024), 075214. http://dx.doi.org/10.1088/1402-4896/ad5062 doi: 10.1088/1402-4896/ad5062
    [47] B. Xu, S. Zhang, Exact solutions of nonlinear equations in mathematical physics via negative power expansion method, J. Math. Phys. Anal. Geo., 17 (2021), 369–387. http://dx.doi.org/10.15407/mag17.03.369 doi: 10.15407/mag17.03.369
    [48] H. Bulut, T. Sulaiman, H. Baskonus, New solitary and optical wave structures to the Korteweg-de Vries equation with dual-power law nonlinearity, Opt. Quant. Electron., 48 (2016), 564. http://dx.doi.org/10.1007/s11082-016-0831-4 doi: 10.1007/s11082-016-0831-4
    [49] A. Seadawy, D. Yaro, D. Lu, Computational wave solutions of generalized higher-order nonlinear Boussinesq dynamical wave equation, Mod. Phys. Lett. A, 34 (2019), 1950338. http://dx.doi.org/10.1142/S0217732319503383 doi: 10.1142/S0217732319503383
    [50] A. Wazwaz, Kink solutions for three new fifth order nonlinear equations, Appl. Math. Model., 38 (2014), 110–118. http://dx.doi.org/10.1016/j.apm.2013.06.009 doi: 10.1016/j.apm.2013.06.009
    [51] S. Jin, Numerical integrations of systems of conservation laws of mixed type, SIAM J. Appl. Math., 55 (1995), 1536–1551. http://dx.doi.org/10.1137/S0036139994268371 doi: 10.1137/S0036139994268371
    [52] M. Khater, S. Elagan, A. Mousa, M. El-Shorbagy, S. Alfalqi, J. Alzaidi, et al., Sub-10-fs-pulse propagation between analytical and numerical investigation, Results Phys., 25 (2021), 104133. http://dx.doi.org/10.1016/j.rinp.2021.104133 doi: 10.1016/j.rinp.2021.104133
    [53] E. Zahran, H. Ahmad, S. Askar, D. Ozsahin, New impressive performances for the analytical solutions to the (1+1)-dimensional van der-waals gas system against its numerical solutions, Results Phys., 51 (2023), 106667. http://dx.doi.org/10.1016/j.rinp.2023.106667 doi: 10.1016/j.rinp.2023.106667
    [54] Z. Yan, H. Zhang, New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics, Phys. Lett. A, 252 (1999), 291–296. http://dx.doi.org/10.1016/S0375-9601(98)00956-6 doi: 10.1016/S0375-9601(98)00956-6
    [55] H. Baskonus, New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics, Nonlinear Dyn., 86 (2016), 177–183. http://dx.doi.org/10.1007/s11071-016-2880-4 doi: 10.1007/s11071-016-2880-4
    [56] L. Huang, L. Pang, P. Wong, Y. Li, S. Bai, M. Lei, et al., Analytic soliton solutions of cubic-quintic Ginzburg-Landau equation with variable nonlinearity and spectral filtering in fiber lasers, Ann. Phys., 528 (2016), 493–503. http://dx.doi.org/10.1002/andp.201500322 doi: 10.1002/andp.201500322
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(356) PDF downloads(31) Cited by(0)

Article outline

Figures and Tables

Figures(18)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog