In this paper, high-order numerical algorithms for two classes of time-independent one-sided tempered fractional diffusion equations were studied. The time derivative was discretized by the backward difference formula, the space tempered fractional derivatives were discretized based on tempered weighted and shifted Grünwald difference operators combined with the quasi-compact technique, and the effective second-order numerical approximations of the left and right third-order Riemann-Liouville tempered derivatives were given, thus the detailed fourth-order numerical schemes of these two classes of equations were derived. With the energy method, we proved rigorously that the numerical schemes were stable and convergent with order $ O(\tau +h^4) $ and were only related to the tempered parameter $ \lambda $. Finally, some examples were given to verify the validity of the numerical schemes.
Citation: Zeshan Qiu. Fourth-order high-precision algorithms for one-sided tempered fractional diffusion equations[J]. AIMS Mathematics, 2024, 9(10): 27102-27121. doi: 10.3934/math.20241318
In this paper, high-order numerical algorithms for two classes of time-independent one-sided tempered fractional diffusion equations were studied. The time derivative was discretized by the backward difference formula, the space tempered fractional derivatives were discretized based on tempered weighted and shifted Grünwald difference operators combined with the quasi-compact technique, and the effective second-order numerical approximations of the left and right third-order Riemann-Liouville tempered derivatives were given, thus the detailed fourth-order numerical schemes of these two classes of equations were derived. With the energy method, we proved rigorously that the numerical schemes were stable and convergent with order $ O(\tau +h^4) $ and were only related to the tempered parameter $ \lambda $. Finally, some examples were given to verify the validity of the numerical schemes.
[1] | E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance, Physica A, 284 (2000), 376–384. https://doi.org/10.1016/S0378-4371(00)00255-7 doi: 10.1016/S0378-4371(00)00255-7 |
[2] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[3] | S. Fedotov, A. Iomin, Migration and proliferation dichotomy in tumor-cell invasion, Phys. Rev. Lett., 98 (2007), 118101. https://doi.org/10.1103/PhysRevLett.98.118101 doi: 10.1103/PhysRevLett.98.118101 |
[4] | R. Metzler, J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen., 37 (2004), R161. https://doi.org/10.1088/0305-4470/37/31/R01 doi: 10.1088/0305-4470/37/31/R01 |
[5] | E. Scalas, Five years of continuous-time random walks in econophysics, In: The complex networks of economic interactions, Berlin: Springer, 2006, 3–16. https://doi.org/10.1007/3-540-28727-2_1 |
[6] | E. Barkai, Y. Garini, R. Metzler, Strange kinetics of single molecules in living cells, Phys. Today, 65 (2012), 29–35. https://doi.org/10.1063/PT.3.1677 doi: 10.1063/PT.3.1677 |
[7] | D. Benson, S. Wheatcraft, M. Meerschaert, Application of a fractional advection‐dispersion equation, Water Resour. Res., 36 (2000), 1403–1412. https://doi.org/10.1029/2000WR900031 doi: 10.1029/2000WR900031 |
[8] | J. Cushman, T. Ginn, Fractional advection-dispersion equation: a classical mass balance with convolution-Fickian Flux, Water Resour. Res., 36 (2000), 3763–3766. https://doi.org/10.1029/2000WR900261 doi: 10.1029/2000WR900261 |
[9] | Y. Zhang, D. Benson, D. Reeves, Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications, Adv. Water Resour., 32 (2009), 561–581. https://doi.org/10.1016/j.advwatres.2009.01.008 doi: 10.1016/j.advwatres.2009.01.008 |
[10] | J. Klafter, I. Sokolov, Anomalous diffusion spreads its wings, Phys. World, 18 (2005), 29. https://dx.doi.org/10.1088/2058-7058/18/8/33 doi: 10.1088/2058-7058/18/8/33 |
[11] | M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion equations, J. Comput. Appl. Math., 172 (2004), 65–77. https://doi.org/10.1016/j.cam.2004.01.033 doi: 10.1016/j.cam.2004.01.033 |
[12] | F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Plank equation, J. Comput. Appl. Math., 166 (2004), 209–219. https://doi.org/10.1016/j.cam.2003.09.028 doi: 10.1016/j.cam.2003.09.028 |
[13] | M. Hooshmandasl, M. Heydari, C. Cattani, Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions, Eur. Phys. J. Plus, 131 (2016), 268. https://doi.org/10.1140/epjp/i2016-16268-2 doi: 10.1140/epjp/i2016-16268-2 |
[14] | Y. Zhao, T. Huang, X. Gu, W. Luo, A fast second-order implicit difference method for time-space fractional advection-diffusion equation, Numer. Func. Anal. Opt., 41 (2020), 257–293. https://doi.org/10.1080/01630563.2019.1627369 doi: 10.1080/01630563.2019.1627369 |
[15] | Z. Zhou, T. Hang, H. Pan, Y. Wang, The upwind PPM scheme and analysis for solving two-sided space-fractional advection-diffusion equations in three dimension, Comput. Math. Appl., 150 (2023), 70–86. https://doi.org/10.1016/j.camwa.2023.09.005 doi: 10.1016/j.camwa.2023.09.005 |
[16] | C. Tadjeran, M. Meerschaert, H. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., 213 (2006), 205–213. https://doi.org/10.1016/j.jcp.2005.08.008 doi: 10.1016/j.jcp.2005.08.008 |
[17] | M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80–90. https://doi.org/10.1016/j.apnum.2005.02.008 doi: 10.1016/j.apnum.2005.02.008 |
[18] | C. Çelik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2012), 1743–1750. https://doi.org/10.1016/j.jcp.2011.11.008 doi: 10.1016/j.jcp.2011.11.008 |
[19] | F. Liu, P. Zhuang, K. Burrage, Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl., 64 (2012), 2990–3007. https://doi.org/10.1016/j.camwa.2012.01.020 doi: 10.1016/j.camwa.2012.01.020 |
[20] | W. Tian, H. Zhou, W. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 84 (2015), 1703–1727. https://doi.org/10.1090/s0025-5718-2015-02917-2 doi: 10.1090/s0025-5718-2015-02917-2 |
[21] | F. Sabzikar, M. Meerschaert, J. Chen, Tempered fractional calculus, J. Comput. Phys., 293 (2015), 14–28. https://doi.org/10.1016/j.jcp.2014.04.024 |
[22] | M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 35 (2008), L17403. https://doi.org/10.1029/2008GL034899 doi: 10.1029/2008GL034899 |
[23] | $\acute{A}$. Cartea, D. del-Castillo-Negrete, Fluid limit of the continuous-time random walk with general L$\acute{e}$vy jump distribution functions, Phys. Rev. E, 76 (2007), 041105. https://doi.org/10.1103/physreve.76.041105 doi: 10.1103/physreve.76.041105 |
[24] | W. Luo, X. Gu, L. Yang, J. Meng, A Lagrange-quadratic spline optimal collocation method for the time tempered fractional diffusion equation, Math. Comput. Simulat., 182 (2021), 1–24. https://doi.org/10.1016/j.matcom.2020.10.016 doi: 10.1016/j.matcom.2020.10.016 |
[25] | B. Baeumer, M. Meerschaert, Tempered stable L$\acute{e}$vy motion and transient super-diffusion, J. Comput. Appl. Math., 233 (2010), 2438–2448. https://doi.org/10.1016/j.cam.2009.10.027 doi: 10.1016/j.cam.2009.10.027 |
[26] | C. Li, W. Deng, High order schemes for the tempered fractional diffusion equations, Adv. Comput. Math., 42 (2016), 543–572. https://doi.org/10.1007/s10444-015-9434-z doi: 10.1007/s10444-015-9434-z |
[27] | E. Hanert, C. Piret, A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation, SIAM J. Sci. Comput., 36 (2014), A1797–A1812. https://doi.org/10.1137/130927292 doi: 10.1137/130927292 |
[28] | M. Dehghan, M. Abbaszadeh, W. Deng, Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation, Appl. Math. Lett., 73 (2017), 120–127. https://doi.org/10.1016/j.aml.2017.04.011 doi: 10.1016/j.aml.2017.04.011 |
[29] | W. Deng, Z. Zhang, Numerical schemes of the time tempered fractional Feynman-Kac equation, Comput. Math. Appl., 73 (2017), 1063–1076. https://doi.org/10.1016/j.camwa.2016.12.017 doi: 10.1016/j.camwa.2016.12.017 |
[30] | L. Feng, F. Liu, V. Anh, S. Qin, Analytical and numerical investigation on the tempered time-fractional operator with application to the Bloch equation and the two-layered problem, Nonlinear Dyn., 109 (2022), 2041–2061. https://doi.org/10.1007/s11071-022-07561-w doi: 10.1007/s11071-022-07561-w |
[31] | H. Zhang, F. Liu, I. Turner, S. Chen, The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option, Appl. Math. Model., 40 (2016), 5819–5834. https://doi.org/10.1016/j.apm.2016.01.027 doi: 10.1016/j.apm.2016.01.027 |
[32] | D. Hu, X. Cao, The implicit midpoint method for Riesz tempered fractional diffusion equation with a nonlinear source term, Adv. Differ. Equ., 2019 (2019), 66. https://doi.org/10.1186/s13662-019-1990-y doi: 10.1186/s13662-019-1990-y |
[33] | Z. Qiu, X. Cao, Second-order numerical methods for the tempered fractional diffusion equations, Adv. Differ. Equ., 2019 (2019), 485. https://doi.org/10.1186/s13662-019-2417-5 doi: 10.1186/s13662-019-2417-5 |
[34] | Y. Zhao, P. Zhu, X. Gu, X. Zhao, H. Jian, A preconditioning technique for all-at-once system from the nonlinear tempered fractional diffusion equation, J. Sci. Comput., 83 (2020), 10. https://doi.org/10.1007/s10915-020-01193-1 doi: 10.1007/s10915-020-01193-1 |
[35] | Z. Qiu, An unconditionally stable numerical method for space tempered fractional convection-diffusion models, J. Math., 2024 (2024), 6710903. https://doi.org/10.1155/2024/6710903 doi: 10.1155/2024/6710903 |
[36] | H. Zhou, W. Tian, W. Deng, Quasi-compact finite difference schemes for space fractional diffusion equations, J. Sci. Comput., 56 (2013), 45–66. https://doi.org/10.1007/s10915-012-9661-0 doi: 10.1007/s10915-012-9661-0 |
[37] | Z. Hao, Z. Sun, W. Cao, A fourth-order approximation of fractional derivatives with its applications, J. Comput. Phys., 281 (2015), 787–805. https://doi.org/10.1016/j.jcp.2014.10.053 doi: 10.1016/j.jcp.2014.10.053 |
[38] | H. Ding, C. Li, High-order algorithms for riesz derivative and their applications (IV), FCAA, 22 (2019), 1537–1560. https://doi.org/10.1515/fca-2019-0080 doi: 10.1515/fca-2019-0080 |
[39] | Y. Yu, W. Deng, Y. Wu, J. Wu, Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations, Appl. Numer. Math., 112 (2017), 126–145. https://doi.org/10.1016/j.apnum.2016.10.011 doi: 10.1016/j.apnum.2016.10.011 |
[40] | R. Bhatia, Positive definite matrices, Princeton: Princeton University Press, 2007. https://doi.org/10.1515/9781400827787 |
[41] | R. Chan, X. Jin, An introduction to iterative Toeplitz solvers, Philadelphia: SIAM, 2007. https://doi.org/10.1137/1.9780898718850 |
[42] | R. Varga, Matrix iterative analysis, Berlin: Springer, 2009. https://doi.org/10.1007/978-3-642-05156-2 |
[43] | A. Quarteroni, A. Valli, Numerical approximation of partial differential equations, Berlin: Springer, 1994. https://doi.org/https://doi.org/10.1007/978-3-540-85268-1 |