In this paper, we study an initial boundary value problem of a nonlinear fractional diffusion equation with the Caputo-type modification of the Erdélyi-Kober fractional derivative. The main tools are the Picard-iteration method, fixed point principle, Mittag-Leffler function, and the embedding theorem between Hilbert scales spaces and Lebesgue spaces. Through careful analysis and precise calculations, the priori estimates of the solution and the smooth effects of the Erdélyi-Kober operator are demonstrated, and then the local existence, uniqueness, and stability of the solution of the nonlinear fractional diffusion equation are established, where the nonlinear source function satisfies the Lipschitz condition or has a gradient nonlinearity.
Citation: Wei Fan, Kangqun Zhang. Local well-posedness results for the nonlinear fractional diffusion equation involving a Erdélyi-Kober operator[J]. AIMS Mathematics, 2024, 9(9): 25494-25512. doi: 10.3934/math.20241245
In this paper, we study an initial boundary value problem of a nonlinear fractional diffusion equation with the Caputo-type modification of the Erdélyi-Kober fractional derivative. The main tools are the Picard-iteration method, fixed point principle, Mittag-Leffler function, and the embedding theorem between Hilbert scales spaces and Lebesgue spaces. Through careful analysis and precise calculations, the priori estimates of the solution and the smooth effects of the Erdélyi-Kober operator are demonstrated, and then the local existence, uniqueness, and stability of the solution of the nonlinear fractional diffusion equation are established, where the nonlinear source function satisfies the Lipschitz condition or has a gradient nonlinearity.
[1] | V. Kiryakova, Generalized fractional calculus and applications, In: Pitman Research Notes in Mathematics, 1994. |
[2] | Podlubny, I., Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998. |
[3] | R. Gorenflo, Y. Luchko, F. Mainardi, Wright functions as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math., 11 (2000), 175–191. https://doi.org/10.1016/S0377-0427(00)00288-0 doi: 10.1016/S0377-0427(00)00288-0 |
[4] | V. Kiryakova, Y. Luchko, Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators, Open Phys., 11 (2013), 1314–1336. https://doi.org/10.2478/s11534-013-0217-1 doi: 10.2478/s11534-013-0217-1 |
[5] | V. Kiryakova, Y. Luchko, Multiple Erdélyi-Kober integrals and derivatives as operators of generalized fractional calculus, In: Basic theory, Boston: De Gruyter, 2019,127–158. https://doi.org/10.1515/9783110571622-006 |
[6] | N. Bouteraa, Mustafa Inc, M. S. Hashemi, S. Benaicha, Study on the existence and nonexistence of solutions for a class of nonlinear Erdélyi-Kober type fractional differential equation on unbounded domain, J. Geom. Phys., 178 (2022), 104546. https://doi.org/10.1016/j.geomphys.2022.104546 doi: 10.1016/j.geomphys.2022.104546 |
[7] | A-M. Hanna Latif, M. Al-Kandari, Y. Luchko, Operational method for solving fractional differential equations with the left-and right-hand sided Erdélyi-Kober fractional derivatives, Fract. Calc. Appl. Anal., 23 (2020), 103–125. https://doi.org/10.1515/fca-2020-0004 doi: 10.1515/fca-2020-0004 |
[8] | Y. Luchko, J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative, Fract. Calc. Appl. Anal., 10 (2007), 249–267. |
[9] | A. Yacine, M. Titraoui, New class of boundary value problem for nonlinear fractional differential equations involving Erdélyi-Kober derivative, Commun. Math., 27 (2019), 113–141. https://doi.org/10.2478/cm-2019-0011 doi: 10.2478/cm-2019-0011 |
[10] | N. Hoang Luc, D. O'Regan, A. T. Nguyen, Solutions of a nonlinear diffusion equation with a regularized Hyper-Bessel operator, Fractal Fract., 6 (2022), 530. https://doi.org/10.3390/fractalfract6090530 doi: 10.3390/fractalfract6090530 |
[11] | V. Van Au J. Singh, A. T. Nguyen, Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients, Electron. Res. Arch., 29 (2021), 3581–3607. https://doi.org/10.3934/era.2021052 doi: 10.3934/era.2021052 |
[12] | G. Pagnini, Erdélyi-Kober fractional diffusion, Fract. Calc. Appl. Anal., 15 (2012), 117–127. https://doi.org/10.2478/s13540-012-0008-1 doi: 10.2478/s13540-012-0008-1 |
[13] | L. Plociniczak, M. Świtala, Existence and uniqueness results for a time-fractional nonlinear diffusion equation, J. Math. Anal. Appl., 462 (2018), 1425–1434. https://doi.org/10.1016/j.jmaa.2018.02.050 doi: 10.1016/j.jmaa.2018.02.050 |
[14] | L. Plociniczak, M. Świtala, Numerical scheme for Erdélyi-Kober type fractional diffusion equation using Galerkin-Hermite method, Fract. Calc. Appl. Anal., 25 (2022), 1651–1687. https://doi.org/10.1007/s13540-022-00063-x doi: 10.1007/s13540-022-00063-x |
[15] | L. Plociniczak, S. Sobieszek, Numerical scheme for integro-differential equations with Erdélyi-Kober type fractional operator, Numer. Algor., 76 (2017), 125–150. https://doi.org/10.1007/s11075-016-0247-z doi: 10.1007/s11075-016-0247-z |
[16] | P. Souplet, Recent results and open problems on parabolic equations with gradient nonlinearities, Electron. J. Differ. Eq., 20 (2001), 1–19. |
[17] | K. Zhang, Existence results for a generalization of the time-fractional diffusion equation with variable coefficients, Bound. Value Probl., 10 (2019), 2019. https://doi.org/10.1186/s13661-019-1125-0 doi: 10.1186/s13661-019-1125-0 |
[18] | K. Zhang, Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators, AIMS Math., 9 (2024), 1358–1372. https://doi.org/10.3934/math.2024067 doi: 10.3934/math.2024067 |
[19] | R. Courant, D. Hilbert, Methods of mathematical physics, John Wiley & Sons, 1989. |
[20] | W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, 2000. |
[21] | H. J. Haubold, A. M. Mathai, R. K. Saxena, Mittag-Leffler functions and their applications, J. Appl. Math., 2011 (2011), 298628. https://doi.org/10.1155/2011/298628 doi: 10.1155/2011/298628 |