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1. Introduction

In this paper, we study an initial boundary value problem of the nonlinear diffusion equation with
space-time fractional derivative

t−βγ∗D
α,γ
β u(t, x) + (−∆)µu(t, x) = f (u,∇u), x ∈ Ω, t ∈ R+,

u(t, x) = 0, x ∈ ∂Ω, t ∈ R+,

limt→0+ tβ(α+1)u(t, x) = u0(x), x ∈ Ω

(1.1)

with a modified initial datum condition, where ∇ is the gradient operator, ∆ =
∑n

i=1 ∂
2
xi

is the Laplace
operator, ∗D

α,γ
β is the Caputo-type modification of the Erdélyi-Kober fractional differential operator

with γ-th order, parameters α ∈ (−1,+∞), β ∈ (0,∞), γ ∈ (0, 1], µ ∈ (0, 1], and Ω ⊆ Rn is a bounded
domain.
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Fractional calculus is an important subject in mathematics, physics, biology, economics, and many
other different fields since it is usually used to describe the property of memory and heredity of many
materials [1, 2]. Riemann-Liouville derivatives, Caputo derivatives, and Erdélyi-Kober derivatives are
the well-known ones. The Riemann-Liouville fractional derivative is always employed in
mathematical texts and not frequently used in applications. The Caputo definition of a fractional
derivative is more useful in modeling reality. The Erdélyi-Kober fractional derivative is often used in
both mathematical texts and applications. The so-called Caputo type modification of the
Erdélyi-Kober fractional derivative is a generalization of these types of fractional derivatives, and its
operations attracts much attentions. Gorenflo, Luchko, and Mainardi first introduced and applied it to
investigate of the scale-invariant solutions of the diffusion-wave equation in [3]. Kiryakova and
Luchko investigated its general properties in the sense of multiple Erdélyi-Kober fractional
derivatives and studied some examples of Cauchy problems of fractional differential equations
involving these type operators in [4, 5]. For more meaningful results and useful applications of the
Erdélyi-Kober fractional derivative, one can find in [6–9].

In this paper, we investigate the local well-posedness of the solution of the nonlinear problem (1.1)
and prepare to establish the theoretical basis for finding efficient numerical approaches later. Some
researchers with similar interest are finding solutions using numerical methods on diffusion models
involving fractional derivatives. Recently, Hoang Luc N. and his collaborators studied a diffusion
equation involving a regularized hyper-Bessel operator in [10], and Van Au V. and his collaborators
established the existence and blowup results of a similar model with gradient nonlinearity in [11]. For
more results, one can refer to [12–17] and the references therein. In order to show our results of the
nonlinear problems, we should first point out the singularity of the initial datum is generated by the the
Erdélyi-Kober fractional derivative [18], then construct and estimate the solution of the linear problem
based on the Mittag–Leffler function. Through a direct observation with the estimates, the smooth
effects of the Caputo type modification of the Erdélyi-Kober fractional derivative on the solution were
confirmed in the inner of the domain. Based on these, by applying embedding theorem between Hilbert
scales spaces and Lebesgue spaces, fixed point theory, and the Picard-iteration method, we establish
the existence, uniqueness, and stability of the solution of fractional diffusion equation for the source
term with two types different nonlinearities. Under this framework, the establishment of global well-
posedness results of the problem (1.1) doesn’t given and deserve to be considered with new ideas and
approaches in another paper.

The rest of this paper is organized as follows: In §2, the basic knowledge of some interpolation
function spaces and some established useful results are given. In §3, we construct a solution of the
linear inhomogeneous diffusion equation and give related estimates in terms of Mittag-Leffler functions
in Hilbert scales spaces. Meanwhile, the smooth effects of the Erdélyi-Kober operator are shown. In §4,
the well-posedness is established for the nonlinear source function that satisfies the Lipschitz condition
or with gradient nonlinearity.

2. Preliminary

First, we recall the results of the eigenvalue problem [19]
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−∆Θi(x) = λiΘi(x), x ∈ Ω,

Θi(x) = 0, x ∈ ∂Ω.
(2.1)

Then there exists a system of standard and complete orthogonal basis {Θi(x)}i∈N+ in L2(Ω), the
corresponding eigenvalues {λi}i∈N+ which satisfies limi→+∞ λi = ∞.

For any ν ∈ R, set

Dν(Ω) = {u(x) =
∞∑

i=1

uiΘi(x) ∈ L2(Ω) : (
∞∑

i=1

λ2ν
i u2

i )
1
2 < +∞}

is equipped with the norm

∥u∥Dν(Ω) = (
∞∑

i=1

λ2ν
i u2

i )
1
2 .

It is obviously that D0(Ω) = L2(Ω). Define

(−∆)νu(x) =
∞∑

i=1

λνi uiΘi(x),

where ui =
∫
Ω

u(x)Θi(x)dx. Since
∫
Ω
Θ2

i (x)dx = 1, then it is easy to verify that

∥u∥Dν(Ω) = ∥(−∆)νu∥L2(Ω) .

In fact, Dν(Ω) is a Hilbert scale space, for more introductions of these spaces, one can refers to [20].
In the following, we recall some embedding results between Hilbert scales spaces and Lebesgue

spaces.
Lemma 2.1. [11] Assume Ω ⊂ Rn is a smooth bounded domain, then

Lq(Ω) ↪→ Dν(Ω), if
−n
4
< v ≤ 0, q ≥

2n
n − 4ν

. (2.2)

Lq(Ω)←↩ Dν(Ω), if 0 ≤ ν <
n
4
, q ≤

2n
n − 4ν

. (2.3)

Based on Lemma 2.1, btain the following nonlinear estimate, although the result had been established
in [10] . Here we rewrite the proof by constructing an analytic function.
Lemma 2.2. Prescribed u, v ∈ Dν(Ω), Ω ⊂ Rn is a smooth bounded domain, and ν, ρ, p satisfy

ν < ρ ≤
n
4
+ ν,

1
2
≤ ν <

n
4
+

1
2
,

max{1,
2n

n − 4(ν − ρ)
}p ≤

2n
n − 4(ν − 1

2 )
,

then there exists

∥|∇u|p − |∇v|p∥Dν−ρ(Ω) ≲ (∥u∥p−1
Dν(Ω) + ∥v∥

p−1
Dν(Ω)) ∥u − v∥Dν(Ω) . (2.4)
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Remark 2.3. Here and in the following of this paper, |a| ≲ |b| means there exists a constant C > 0 such
that |a| ≤ C|b|.
Proof. Consider the function

f (x) = (1 − p)(xp − 1) + xp(xp−2 − 1), x ∈ (0,∞), p > 0, (2.5)

then by computing the derivative, one has

f ′(x) = (1 − p)p[xp−2(x − 1) − (1 − p)−1].

Furthermore, for 0 < p < 1, there is

f ′′(x) = (1 − p)pxp−3[(p − 1)x − p + 2].

with the zero point x0 = 1+ 1
1−p , and f ′(x) is monotonically increasing for x ∈ (0, 1+ 1

p−1 ), monotonically
decreasing for x ∈ (1 + 1

p−1 ,∞). Hence

f ′(x) ≤ f ′(1 +
1

1 − p
) = p[(1 +

1
1 − p

)p−2 − 1] < 0.

This yields that f (x) is monotonically decreasing for x ∈ (0,+∞), and then f (x) ≤ 0 since f (1) = 0.
For p = 1, we obtain f (x) = 1 − x ≤ 0 for x ∈ (0,+∞). For p > 1, we also have f ′(x) < 0, and f (x) is
monotonically decreasing for x ∈ (0,∞) by a similar analysis, then f (x) ≤ 0 is also holding. Therefore,
there exists f (x) ≤ 0 for any x ∈ (0,∞), p > 0.

Set x = |∇u| (|∇v|)−1, and substitute it into f (x) ≤ 0 in terms of (2.5), then we derive

(1 − p)(|∇u|p (|∇v|)−p − 1) + p |∇u| (|∇v|)−1(|∇u|p−2 (|∇v|)2−p − 1) ≤ 0,

which is equivalent to

||∇u|p − |∇v|p| ≤
∣∣∣p(|∇u| − |∇v|)(|∇u|p−1 + |∇v|p−1)

∣∣∣ . (2.6)

Take any q ∈ [max{1, 2n
n−4(ν−ρ) }p,

2n
n−4(ν− 1

2 )
] and integrate (2.6) on Ω, we have

∥|∇u|p − |∇v|p∥
L

q
p (Ω)
= [
∫
Ω

|(|∇u|p − |∇v|p)|
q
p dx]

p
q

≤ p[
∫
Ω

|(|∇u| − |∇v|)A|
q
p dx]

p
q

≤ p[
∫
Ω

(|∇u| − |∇v|)qdx]
1
q [
∫
Ω

A
q

p−1 dx]
p−1

q

= p ∥|∇u| − |∇v|∥Lq(Ω) [
∫
Ω

A
q

p−1 dx]
p−1

q

(2.7)

in terms of of hölder inequality, where

A = |∇u|p−1 + |∇v|p−1 . (2.8)

Besides, it follows Minkovsiki inequality and (2.8) that
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[
∫
Ω

A
q

p−1 dx]
p−1

q = [
∫ ∣∣∣(|∇u|p−1 + |∇v|p−1)

∣∣∣ q
p−1 dx]

p−1
q

≤ [
∫
Ω

(|∇u|p−1)
q

p−1 dx]
p−1

q + [
∫
Ω

(|∇v|p−1)
q

p−1 dx]
p−1

q

≤ ∥|∇u|∥p−1
Lq(Ω) + ∥|∇v|∥p−1

Lq(Ω) ,

(2.9)

and applying Cauchy inequality, we have

||∇u| − |∇v|| =
( n∑

i=1

u2
xi
+

n∑
i=1

v2
xi
− 2
(
(

n∑
i=1

u2
xi

)(
n∑

i=1

v2
xi

)
)) 1

2

≲
( n∑

i=1

u2
xi
+

n∑
i=1

v2
xi
− 2

n∑
i=1

uxivxi

) 1
2

= |∇u − ∇v| .

(2.10)

Then, substituting (2.9) and (2.10) into (2.7), we arrive at

∥|∇u|p − |∇v|p∥
L

q
p (Ω)
≲ (∥∇u∥p−1

Lq(Ω) + ∥∇v∥p−1
Lq(Ω)) ∥∇u − ∇v∥Lq(Ω) . (2.11)

Based on (2.11) and Lemma 2.1 (2.3), one has

∥|∇u|p − |∇v|p∥
L

q
p (Ω)

≲(∥∇u∥p−1

Dv− 1
2 (Ω)
+ ∥∇v∥p−1

Dν−
1
2 (Ω)

) ∥∇u − ∇v∥
Dν−

1
2 (Ω)

≲(∥∇u∥p−1
Dν(Ω) + ∥∇v∥p−1

Dν(Ω)) ∥∇u − ∇v∥Dν(Ω) .

(2.12)

Then, (2.5) is derived in terms of (2.12) and Lemma 2.1 (2.2) for 2n
n−4(ν−ρ) ≤

q
p .

Next, we recall some definitions of Erdélyi-Kober fractional integral and differential operators.
Definition 2.4. [1, 2] For a function f (t) ∈ Cµ, µ ∈ R, then the integral

Iα,γβ f (t) =
t−β(α+γ)

Γ(γ)

∫ t

0
(tβ − τβ)γ−1τβα f (τ)d(τβ)

is called the Erdélyi-Kober fractional integral of f (t) with arbitrary parameters α ∈ R, β ∈ R+ and
γ ∈ R+, where the weighted space of continuous functions f (t) is defined by

C(k)
µ = { f (t) = tp f̃ (t) : p > µ, f̃ (t) ∈ C(k)[0,∞)}, k ∈ N.

The Erdélyi-Kober fractional integral is defined as the identity operator for γ = 0 and is reduced to the
well-known Riemann-Liouville fractional integral with a power weight for α = 0, β = 1.
Definition 2.5. [4,5] The Riemann-Liouille type modification of the Erdélyi-Kober fractional derivative
of a function f (t) ∈ C(1)

µ with the order γ is defined by
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Dα,γβ f (t) = (α +
1
β

t
d
dt

)Iα+γ,1−γβ f (t), γ ∈ (0, 1].

Compared with the definition of the Riemann-Liouille type modification of the Erdélyi-Kober
fractional derivative of a function f (t) ∈ C(1)

µ with the order γ, the Caputo type modification also can
be defined.
Definition 2.6. [4, 5] The Caputo type modification of the Erdélyi-Kober fractional derivative of a
function f (t) ∈ C(1)

µ with the order γ is defined by

∗D
α,γ
β f (t) = Iα+γ,1−γβ (α +

1
β

t
d
dt

) f (t), γ ∈ (0, 1].

The singular initial value problem of fractional differential equation with the Caputo-type modification
of the Erdélyi-Kober derivativet

−βα
∗D
α,γ
β u(t) + λu(t) = f (t), t ∈ R+,

lim
t→0

tβ(α+1)u(t) = u0
(2.13)

had been studied and the following result can be directly derived from Theorem 3.4 in [18] with
parameters α ∈ (−1,+∞), β ∈ (0,∞), γ ∈ (0, 1], µ ∈ (0, 1].
Lemma 2.7. [18] Given a function f ∈ Cβδ, δ ≥ max{0,−α − γ} − 1, then there exists an explicit
solution u ∈ Cβδ of the problem (2.13), which is given in the form

u(t) = u0Γ(γ)t−β(α+1)Eγ,γ(−λtβγ)

+ t−β(α+γ)
∫ t

0
(tβ − τβ)γ−1τβ(α+γ)Eγ,γ[−λ(tβ − τβ)γ] f (τ)d(τβ).

(2.14)

At last, the Mittag-Leffler function is an entire function, which is represented by the convergent series

Eα,β(t) =
∞∑

i=0

ti

Γ(αi + β)
, ℜ(α) > 0,ℜ(β) > 0, (2.15)

where α ∈ C, β ∈ C, ℜ(·) denoting the real part of a complex number. The asymptotic expansion of
the Mittag-Leffler function is given in the following.
Lemma 2.8. [21] Given α ∈ (0, 1), β ∈ R, and γ ∈ (πα2 , π), then there exists

∣∣∣Eα,β(z)
∣∣∣ ≲ 1

1 + |z|
(2.16)

for any z ∈ C such that γ ≤ |argz| < π.

3. Estimates of the solution of the linear fractional diffusion equation

In this section, we consider the singular initial value problem of the linear fractional diffusion
equation
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t−βγ∗D

α,γ
β u(t, x) + (−∆)µu(t, x) = f (t, x), x ∈ Ω, t ∈ R+,

u(t, x) = 0, x ∈ ∂Ω, t ∈ R+,

limt→0 tβ(α+1)u(t, x) = u0(x), x ∈ Ω

(3.1)

with the initial datum u0(x) ∈ Dν(Ω). In order to obtain the formal solution of (3.1), applying the
method of separation of variables, we obtain the spectral problem(−∆)µΘi(x) = λµiΘi(x), x ∈ Ω,

Θi(x) = 0, x ∈ ∂Ω,

and the corresponding Cauchy problemt
−βα
∗D
α,γ
β u(t) + λµi u(t) = fi(t), t ∈ R+,

lim
t→0

tβ(α+1)u(t) = u0i,

where fi(t) =
∫
Ω

f (t, x)Θi(x)dx and u0i =
∫
Ω

u0(x)Θi(x)dx.
Take

R1(t)u0(x) :=
∞∑

i=1

Eγ,γ(−λ
µ
i tβγ)u0iΘi(x), (3.2)

R2(t, τ) f (τ, x) :=
∞∑

i=1

(tβ − τβ)γ−1Eγ,γ(−λ
µ
i (tβ − τβ)γ) fi(τ)Θi(x), (3.3)

then, in terms of (2.1) and Lemma 2.7 (2.14), we obtain a formal solution of the problem (3.1), which
is represented by

u(t, x) = Γ(γ)t−β(α+1)R1(t)u0(x) + t−β(α+γ)
∫ t

0
τβ(α+γ)R2(t, τ) f (τ, x)d(τβ). (3.4)

Lemma 3.1. Given g ∈ Dν(Ω) and 0 ≤ θ ≤ 1, then there exist

∥R1(t)g(x)∥Dν+θµ(Ω) ≲ t−θβγ ∥g(x)∥Dν(Ω) , (3.5)

∥R2(t, 0)g(x)∥Dν+θµ(Ω) ≲ tβ((1−θ)γ−1) ∥g(x)∥Dν(Ω) . (3.6)

Proof. In terms of (3.2), it is easy to derive that

∥R1(t)g(x)∥2Dν+θµ(Ω) =
∥∥∥(−∆)ν+θµR1(t)g(x)

∥∥∥2
L2(Ω)

=

∞∑
i=1

λ
2(ν+θµ)
i [Eγ,γ(−λ

µ
i tβγ)]2g2

i .
(3.7)

Based on (2.16), we have
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∣∣∣Eγ,γ(−λµl tβγ)
∣∣∣ ≲ 1

1 + λµi tβγ

=(
1

1 + λµi tβγ
)(1−θ)(

1
1 + λµi tβγ

)θ

≲λ−θµi t−θβγ,

(3.8)

then, substituting (3.7) into (3.8), we obtain

∥R1(t)g(x)∥2Dν+θµ(Ω) ≲
∞∑

i=1

λ
2(ν+θµ)
i λ

−2θµ
i t−2θβγg2

i

=t−2θβγ ∥g(x)∥2Dν(Ω) .

This yields (3.5).
Similarly, we derive

∥R2(t, 0)g(x)∥2Dν+θµ(Ω) =

∞∑
i=1

λ
2(ν+θµ)
i t2β(γ−1)[Eγ,γ(−λ

µ
i tβγ)]2g2

i

≲
∞∑

i=1

λ
2(ν+θµ)
i t2β(γ−1)−2θβγg2

i λ
−2θµ
i

=t2β((1−θ)γ−1) ∥g(x)∥2Dν(Ω) .

Hence, (3.6) is holding.
Theorem 3.2 Given θ ∈ [0, 1], u0(x) ∈ Dν(Ω), and f (t, x) ∈ C((0,+∞);Dν(Ω)) with a bounded norm in
the sense of sup

τ∈(0,t)

∥∥∥tβ(α+1+θγ) f (t, x)
∥∥∥
Dν(Ω)

< M for some positive constant M, then there exists a solution

u ∈ C((0,+∞);Dν+θµ(Ω)) of the problem (3.1), which is expressed by (3.4) and satisfies

∥∥∥tβ(α+1+θγ)u(t, x)
∥∥∥
Dν+θµ(Ω)

≲ ∥u0(x)∥Dν(Ω) + t(1−θ)βγ sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ) f (τ, x)
∥∥∥
Dν(Ω)
.

(3.9)

In particular, we have

lim
t→0

∥∥∥tβ(α+1)u(t, x) − u0(x)
∥∥∥
Dν(Ω)

= 0. (3.10)

Moreover, there exists ∗D
α,γ
β u(t, x) ∈ C(0,+∞;Dν+(θ−1)µ(Ω)) and

∥∥∥∥tβ(α+1+(θ−1)γ)
∗D
α,γ
β u(t, x)

∥∥∥∥
Dν+(θ−1)µ(Ω)

≲ ∥u0(x)∥Dν(Ω) + (1 + t(1−θ)βγ) sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ) f (τ, x)
∥∥∥
Dν(Ω)
.

(3.11)
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Proof. Based on Lemma 3.1 (3.6), we have

∥∥∥∥∥∥tβ(α+1+θγ)t−β(α+γ)
∫ t

0
τβ(α+γ)R2(t, τ) f (τ, x)d(τβ)

∥∥∥∥∥∥
Dν+θµ(Ω)

≲tβ(1−γ(1−θ))
∫ t

0
τβ(α+γ) ∥R2(t, τ) f (τ, x)∥Dν+θµ(Ω) d(τβ)

≲tβ(α+γ+1)
∫ t

0
(
τ

t
)β(γ+α)(1 − (

τ

t
)β)γ(1−θ)−1 ∥ f (τ, x)∥Dν(Ω) d((

τ

t
)β)

≲t(1−θ)βγ sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ) f (τ, x)
∥∥∥
Dν(Ω)

×

∫ t

0
(
τ

t
)β((1−θ)γ−1)(1 − (

τ

t
)β)γ(1−θ)−1d((

τ

t
)β)

=t(1−θ)βγ sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ) f (τ, x)
∥∥∥
Dν(Ω)

∫ 1

0
s(1−θ)γ−1(1 − s)γ(1−θ)−1ds

≲t(1−θ)βγ sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ) f (τ, x)
∥∥∥
Dν(Ω)
.

Then, applying (3.4) and Lemma 3.1 (3.5), we obtain

∥∥∥tβ(α+1+θγ)u(t, x)
∥∥∥
Dν+θµ(Ω)

≲ ∥u0(x)∥Dν(Ω) +

∥∥∥∥∥∥tβ(α+1+θγ)t−β(α+γ)
∫ t

0
τβ(α+γ)R2(t, τ) f (τ, x)d(τβ)

∥∥∥∥∥∥
Dν+θµ(Ω)

≲ ∥u0(x)∥Dν(Ω) + t(1−θ)βγ sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ) f (τ, x)
∥∥∥
Dν(Ω)
.

Hence, we derive that u ∈ C(0,+∞;Dν+θµ(Ω)) which satisfies (3.9) and (3.10). Furthermore, by a direct
computation, there exists

∥∥∥tβ(α+1+θγ)(−∆)µu(t, x)
∥∥∥
Dν+(θ−1)µ(Ω)

=
∥∥∥tβ(α+1+θγ)u(t, x)

∥∥∥
Dν+θµ(Ω)

≲ ∥u0(x)∥Dν(Ω) + t(1−θ)βγ sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ) f (τ, x)
∥∥∥
Dν(Ω)
.

Besides, in terms of the first Eq (3.1), we have
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∥∥∥∥tβ(α+1+(θ−1)γ)
∗D
α,γ
β u(t, x)

∥∥∥∥
Dν+(θ−1)µ(Ω)

=
∥∥∥tβ(α+1+θγ)((−∆)µu(t, x) + f (t, x))

∥∥∥
Dν+(θ−1)µ(Ω)

≲
∥∥∥tβ(α+1+θγ)((−∆)µu(t, x)

∥∥∥
Dν+(θ−1)µ(Ω)

+
∥∥∥tβ(α+1+θγ) f (t, x))

∥∥∥
Dν+(θ−1)µ(Ω)

≲ ∥u0(x)∥Dν(Ω) + t(1−θ)βγ sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ) f (τ, x)
∥∥∥
Dν(Ω)

+
∥∥∥tβ(α+1+θγ) f (t, x))

∥∥∥
Dν+(θ−1)µ(Ω)

≲ ∥u0(x)∥Dν(Ω) + (1 + t(1−θ)βγ) sup
τ∈(0,t)

∥∥∥τβ(α+1) f (τ, x)
∥∥∥
Dν(Ω)
.

Hence, we obtain (3.11) and complete the proof.
Remark 3.3. It is easy to verify that f (t, x) ∈ C−β(α+1+θγ)−ϵ((0,+∞);Dν(Ω)) for any ϵ > 0 in Theorem
3.2, then f (t, x) ∈ Cβδ((0,+∞);Dν(Ω)) which is given in Theorem 2.8.
Remark 3.4. The condition sup

τ∈(0,t)

∥∥∥tβ(α+1+θγ) f (t, x)
∥∥∥
Dν(Ω)

< M is natural for α ∈ (−1,+∞), β ∈ (0,+∞),

γ ∈ (0, 1] and θ ∈ [0, 1], because β(α + 1 + θγ) > 0 for θ = 0.
Remark 3.5. The Caputo type modification of the Erdélyi-Kober fractional differential operator has
smooth effects; the regularity of the solution is higher than the initial datum with θµ order.

4. Local well-posedness for space-time fractional diffusion equation with nonlinear source term

First, we consider 
t−βγ∗D

α,γ
β u + (−∆)µu = |∇u|p, x ∈ Ω, t > 0,

u(t, x) = 0, x ∈ ∂Ω, t > 0,
limt→0 tβ(α+1)u(t, x) = u0(x), x ∈ Ω

(4.1)

with a gradient nonlinearity, where α ∈ (−1,+∞), β ∈ (0,∞), γ ∈ (0, 1], µ ∈ (0, 1), Ω ⊆ Rn, n ∈ N+.
Given ν, θ, p satisfy

0 ≤ θ ≤ 1,
1
2
≤ ν <

n
4
+

1
2
, ν ≤ θµ <

n
4
+ ν,

0 < p ≤ min{
2n

m(n − 4(v − 1
2 ))
,
α + γ + 1
α + θγ + 1

},
(4.2)

where m = max{1, 2n
n−4(ν−θµ) }.

Based on Lemma 2.2, we show a similar result for the problem (4.1) in the same space.
Theorem 4.1. (Uniqueness and stability) Under the conditions (4.2), prescribed u0 ∈ D

ν(Ω), if u is a
solution of the problem (4.1), which satisfies

sup
t∈(0,T )

∥∥∥tβ(α+1+θγ)u(t, x)
∥∥∥
Dν+θµ(Ω)

≤ M (4.3)
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for some given positive constants M and T , then the solution u ∈ C((0,T ];Dν+θµ(Ω)) is uniqueness and
stability.
Proof. Assume ui(t, x) is a solution of the following problem

t−βγ∗D
α,γ
β ui + (−∆)µui = |∇ui|

p, x ∈ Ω, t > 0,
ui(t, x) = 0, x ∈ ∂Ω, t > 0,
limt→0 tβ(α+1)ui(t, x) = u0i(x), x ∈ Ω

(4.4)

for u01(x) = u02(x) + ϵ.
Uniqueness If ϵ = 0, and u1(t, x) , u2(t, x), then set U(t, x) = u1(t, x) − u2(t, x), we obtain

t−βγ∗D
α,γ
β U + (−∆)µU = |∇u1|

p
− |∇u2|

p, x ∈ Ω, t > 0,
U(t, x) = 0, x ∈ ∂Ω, t > 0,
limt→0 tβ(α+1)U(t, x) = 0, x ∈ Ω,

(4.5)

Under the condition 0 < p < α+γ+1
α+1+θγ , there exist∫ 1

0
sα+γ−p(α+1+θγ)(1 − s)γ(1−θ)−1ds ≲ 1. (4.6)

According to Lemma 2.2, the nonlinear term satisfies

∥|∇u1|
p
− |∇u2|

p
∥Dν(Ω) < (∥u1∥

p−1
Dν+θµ(Ω) + ∥u2∥

p−1
Dν+θµ(Ω)) ∥U∥Dν+θµ(Ω) . (4.7)

Then, in terms of (4.6) and (4.7) and Lemma 3.1 (3.6), we have

∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

≲

∥∥∥∥∥∥tβ(α+1+θγ)t−β(α+γ)
∫ t

0
τβ(α+γ)R2(t, τ)(|∇u1|

p
− |∇u2|

p)d(τβ)

∥∥∥∥∥∥
Dν+θµ(Ω)

≲tβ(α+γ+1)
∫ t

0
(
τ

t
)β(γ+α)(1 − (

τ

t
)β)γ(1−θ)−1 ∥|∇u1|

p
− |∇u2|

p
∥Dν(Ω) d((

τ

t
)β)

≲tβ(α+γ+1)
∫ t

0
(
τ

t
)β(γ+α)(1 − (

τ

t
)β)γ(1−θ)−1

× (∥u1∥
p−1
Dν+θµ(Ω) + ∥u2∥

p−1
Dν+θµ(Ω)) ∥U∥Dν+θµ(Ω) d((

τ

t
)β)

≲tβ(α+γ+1−p(α+1+θγ)) sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ)U(τ, x)
∥∥∥
Dν+θµ(Ω)

×

∫ t

0
(
τ

t
)β(γ+α−p(α+1+θγ))(1 − (

τ

t
)β)γ(1−θ)−1d((

τ

t
)β)

≲tβ(α+γ+1−p(α+1+θγ)) sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ)U(τ, x)
∥∥∥
Dν+θµ(Ω)

.

(4.8)

Besides, for some small T0 ∈ [0, 1), there exists T ∈ [0,T0] such that∥∥∥T β(α+1+θγ)U(T, x)
∥∥∥
Dν+θµ(Ω)

= sup
t∈[0,T0]

∥∥∥τβ(α+1+θγ)U(τ, x)
∥∥∥
Dν+θµ(Ω)

.
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Then, for all t ∈ [0,T0], it follows

∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

≤
1
2

∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

in terms of (4.8). This yields

sup
t∈[0,T ]

∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

= 0,

which means U(t, x) ≡ 0 for all t ∈ (0,T ]. Then the uniqueness of the solution is established.
Stability If |ϵ | ≪ 1, set U(t, x) = u1(t, x) − u2(t, x), we consider

t−βγ∗D
α,γ
β U + (−∆)µU = |∇u1|

p
− |∇u2|

p, x ∈ Ω, t > 0,
U(t, x) = 0, x ∈ ∂Ω, t > 0,
limt→0 tβ(α+1)U(t, x) = ϵ, x ∈ Ω.

(4.9)

Then, by a direct computation, we have

∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

≲ϵ + tβ(α+γ+1−p(α+1+θγ)) sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ)U(τ, x)
∥∥∥
Dν+θµ(Ω)

.
(4.10)

Similarly, we can find a small T ∈ (0, 1) such that

sup
τ∈(0,T )

∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

≲ ϵ. (4.11)

This yields that the solution of the problem (4.1) continuously depends on the initial datum.
Theorem 4.2. (Existence) Under the conditions (4.2), assume u0 ∈ D

ν(Ω), then there exists a solution
u ∈ C((0,T ];Dν+θµ(Ω)) of the problem (4.1) which satisfies (4.3) with M = M(∥u0(x)∥Dν(Ω)). Besides, if
p < 1, then there exists ∗D

α,γ
β u(t, x) ∈ C((0,T ];Dν+(θ−1)µ(Ω)).

Proof. Denotes a set S = {u(t, x)| sup
t∈(0,T ]

∥∥∥tβ(α+1+θγ)u(t, x)
∥∥∥
Dν+θµ(Ω)

< M} for some M > 0 and T > 0.

Consider the sequence {u j(t, x)} j∈N ⊂ S expressed by

u1(t, x) = Γ(γ)t−β(α+1)R1(t)u0(x),

u j+1(t, x) = u1(t, x) + t−β(α+γ)
∫ t

0
τβ(α+γ)R2(t, τ)|∇u j(τ, x)|pd(τβ), j ∈ N.

Set vi(t, x) = tβα+1+θγui(t, x) in the following.Then applying Lemma 3.1 (3.5), we have

∥v1(t, x)∥Dν+θµ(Ω) ≲ ∥u0(x)∥Dν(Ω) < M. (4.12)

This yields u1 ∈ S.
In the following, by use of induction methods, we prove u j ∈ S for j ≥ 2. By use of a direct

computation, there exists
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∥∥∥v j+1(t, x)
∥∥∥
Dν+θµ(Ω)

≤ ∥u0(x)∥Dν(Ω)

+tβ(α+γ+1)
∫ t

0
(
τ

t
)β(γ+α)(1 − (

τ

t
)β)γ(1−θ)−1

∥∥∥∥∥∥| ∇v j(τ, x)
τβ(α+1+θγ) |

p

∥∥∥∥∥∥
Dν(Ω)

d((
τ

t
)β).

(4.13)

Taking u = u j, v = 0 in Lemma 2.2, we have

∥∥∥|∇u j(τ, x)|p
∥∥∥
Dν(Ω)

≲
∥∥∥u j(τ, x)

∥∥∥p

Dν+θµ(Ω)
. (4.14)

Substituting (4.14) into (4.13), it follows that

∥∥∥v j+1(t, x)
∥∥∥
Dν+θµ(Ω)

≤ ∥u0(x)∥Dν(Ω) + tβ(α+γ+1−p(α+1+θγ))

×

∫ t

0
(
τ

t
)β(γ+α−p(α+1+θγ))(1 − (

τ

t
)β)γ(1−θ)−1

×
∥∥∥v j(τ, x)

∥∥∥p

Dν+θµ(Ω)
d((
τ

t
)β)

≲ ∥u0(x)∥Dν(Ω) + tβ(α+γ+1−p(α+1+θγ)) sup
τ∈(0,t)

∥∥∥v j(τ, x)
∥∥∥p

Dv(Ω)
.

(4.15)

Since u j ∈ S, and

sup
t∈(0,T )

∥∥∥v j(t, x)
∥∥∥

Dν+θµ(Ω)
< M. (4.16)

Then, in terms of (4.15) and (4.16), there exists some small T such that

∥∥∥v j+1(t, x)
∥∥∥
Dν+θµ(Ω)

≲ ∥u0(x)∥Dν(Ω) + T β(α+γ+1−p(α+1+θγ))M

<M.

This yields u j+1 ∈ S. In terms of induction methods, we confirm {u j} j∈N ∈ S.

In the following, we show {u j} j∈N ∈ S is a Cauchy convergent sequence. Consider
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∥∥∥v j+1(t, x) − v j(t, x)
∥∥∥
Dν+θµ(Ω)

≲tβ(α+γ+1−p(α+1+θγ))
∫ t

0
(
τ

t
)β(γ+α−p(α+1+θγ))(1 − (

τ

t
)β)γ(1−θ)−1

×
∥∥∥(|∇v j(τ, x)|p − |∇v j−1(τ, x)|p)

∥∥∥
Dν(Ω)

d((
τ

t
)β)

≲tβ(α+γ+1−p(α+1+θγ))
∫ t

0
(
τ

t
)β(γ+α−p(α+1+θγ))(1 − (

τ

t
)β)γ(1−θ)−1(

∥∥∥v j(τ, x)
∥∥∥p−1

Dν+θµ(Ω)

+
∥∥∥v j−1(τ, x)

∥∥∥p−1

Dν+θµ(Ω)
)
∥∥∥v j(τ, x) − v j−1(τ, x)

∥∥∥
Dν+θµ(Ω)

d((
τ

t
)β)

≲tβ(α+γ+1−p(α+1+θγ))
∫ t

0
(
τ

t
)β(γ+α−p(α+1+θγ))(1 − (

τ

t
)β)γ(1−θ)−1

×
∥∥∥v j(τ, x) − v j−1(τ, x)

∥∥∥
Dν+θµ(Ω)

d((
τ

t
)β)

≲tβ(α+γ+1−p(α+1+θγ)) sup
τ∈(0,t)

∥∥∥v j(τ, x) − v j−1(τ, x)
∥∥∥
Dν+θµ(Ω)

.

(4.17)

Then, for some small T , (4.17) becomes into

∥∥∥v j+1(t, x) − v j(t, x)
∥∥∥
Dν+θµ(Ω)

≲T β(α+γ+1) sup
t∈(0,T )

∥∥∥v j(t, x) − v j−1(t, x)
∥∥∥
Dν+θµ(Ω)

≤
1
2

sup
t∈(0,T )

∥∥∥v j(t, x) − v j−1(t, x)
∥∥∥
Dν+θµ(Ω)

.

(4.18)

This implies {v j} j∈N+ is a Cauchy convergent sequence, which implies that there exists a u ∈ S such that

lim
j→∞

sup
t∈(0,T )

∥∥∥v j(t, x) − v(t, x)
∥∥∥
Dν+θµ(Ω)

= lim
j→∞

sup
t∈(0,T )

∥∥∥tβ(α+1+θγ)(u j(t, x) − u(t, x))
∥∥∥
Dν+θµ(Ω)

= 0.

Then, we derive

u(t, x) = lim
j→∞

u j(t, x)

= u1(t, x) + tβ(α+1)
∫ t

0
(
τ

t
)
β(α+γ)

R2,σ(t, τ)|∇u(τ, x)|pd(τβ).

Hence, we established the existence of the solution to the problem (4.1).
Moreover, by using a similar analysis in (4.8) with the first equation of (4.1), we obtain
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∥∥∥∥tβ(α+1+(θ−1)γ)
∗D
α,γ
β u(t, x)

∥∥∥∥
Dν+(θ−1)µ(Ω)

=
∥∥∥tβ(α+1+θγ)((−∆)µu(t, x) + |∇u(t, x)|p)

∥∥∥
Dν+(θ−1)µ(Ω)

≲ ∥u0(x)∥Dν(Ω) + T β(1−p)(α+1+θγ) sup
t∈(0,T )

∥∥∥tβ(α+1+θγ)u(t, x)
∥∥∥p

Dν+(2θ−1)µ(Ω)

≲ ∥u0(x)∥Dν(Ω)

for some small T > 0.
Finally, we complete the proof of Theorem 4.2.
At last, we consider the problem (1.1) with the nonlinear source term f (u,∇u), which satisfies

f (0, 0) = 0, and the Lipschitz condition, that is

∥ f (u1,∇u1) − f (u2,∇u2)∥Dν(Ω) ≲ ∥u1 − u2∥Dν(Ω) . (4.19)

Based on Theorem 3.2, applying the fixed point theorem or a similar method used in Theorems 4.1
and 4.2, we give the following results.
Theorem 4.3. (Uniqueness and stability) Given u0 ∈ Dν(Ω) and θ ∈ [0, 1), prescribed
u ∈ C((0,T ];Dν+θµ(Ω)) is a solution of the problem (1.1) under the condition (4.19), which satisfies

sup
t∈(0,T )

∥∥∥tβ(α+1+θγ)u(t, x)
∥∥∥
Dν+θµ(Ω)

≤ M (4.20)

for some positive constants M and T , then the solution is unique and stable.
Proof. Assume ui(t, x), i = 1, 2 is a solution of the following problem

t−βγ∗D
α,γ
β ui + (−∆)µui = f (ui,∇ui), x ∈ Ω, t ∈ R+,

ui(t, x) = 0, x ∈ ∂Ω, t ∈ R+,

limt→0 tβ(α+1)ui(t, x) = u0i(x), x ∈ Ω

(4.21)

for u01(x) = u02(x) + ϵ. Set U(t, x) = u1(t, x) − u2(t, x), then there exists
t−βγ∗D

α,γ
β U + (−∆)µU = f (u1,∇u2) − f (u1,∇u2), x ∈ Ω, t ∈ R+,

U(t, x) = 0, x ∈ ∂Ω, t ∈ R+,

limt→0 tβ(α+1)U(t, x) = ϵ, x ∈ Ω.

(4.22)

Uniqueness If ϵ = 0, and u1(t, x) , u2(t, x), then there exists a nonzero solution U solves the problem
t−βγ∗D

α,γ
β U + (−∆)µU = f (u1,∇u2) − f (u1,∇u2), x ∈ Ω, t ∈ R+,

U(t, x) = 0, x ∈ ∂Ω, t ∈ R+,

limt→0 tβ(α+1)U(t, x) = 0, x ∈ Ω.

(4.23)

According to the Lipschitz condition (4.19), the nonlinear term satisfies

∥ f (u1,∇u2) − f (u1,∇u2)∥Dν(Ω) ≲ ∥U∥Dν+θµ(Ω) (4.24)

Then, in terms of (3.9) in Lemma 3.2, we have
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∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

≲ t(1−θ)βγ sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ)U(τ, x)
∥∥∥
Dν+θµ(Ω)

(4.25)

Besides, for some small T0 ∈ [0, 1), there exists T ∈ [0,T0] such that∥∥∥T β(α+1+θγ)U(T, x)
∥∥∥
Dν+θµ(Ω)

= sup
t∈(0,T0]

∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

Then, for all t ∈ [0,T ], it follows

∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

≤
1
2

∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

in terms of (4.24). This yields

sup
t∈(,T ]

∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

= 0

which means U(t, x) ≡ 0 for all t ∈ (0,T ]. This is a contradiction with u1(t, x) , u2(t, x).Then the
uniqueness of the solution is established.
Stability Consider the problem (4.22) for |ϵ | ≪ 1, by a similar computation as deriving (3.9), we have∥∥∥tβ(α+1+θγ)U(t, x)

∥∥∥
Dν+θµ(Ω)

≲ ϵ + t(1−θ)βγ sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ)U(τ, x)
∥∥∥
Dν+θµ(Ω)

(4.26)

Then, based on the condition (4.20) and θ ∈ (0, 1), we can find a small T ∈ (0, 1) such that

sup
τ∈(0,T ]

∥∥∥tβ(α+1+θγ)U(t, x)
∥∥∥
Dν+θµ(Ω)

≲ ϵ. (4.27)

Finally, we complete the proof of the stability of the solution.
Theorem 4.4. (Existence) Given u0 ∈ D

ν(Ω) and θ ∈ [0, 1), then there exists a solution
u ∈ C((0,T ];Dν+θµ(Ω)) of the problem (1.1), which satisfies (4.20) for M = M(∥u0(x)∥Dν(Ω)).
Moreover, there exists ∗D

α,γ
β u(t, x) ∈ C((0,T ];Dν+(θ−1)µ(Ω)).

Proof. Using a set S as defined in Theorem 4.2 for some M > 0 and T > 0. Define a mapping F by

Fu = u1(t, x) + t−β(α+γ)
∫ t

0
τβ(α+γ)R2(t, τ) f (u,∇u)d(τβ),

where

u1(t, x) = Γ(γ)t−β(α+1)R1(t)u0(x).

Then applying Lemma 3.2 (3.9), we have∥∥∥tβ(α+1+θγ)Fu(t, ·)
∥∥∥
Dν+θµ(Ω)

≲ ∥u0(x)∥Dν(Ω) < M (4.28)

for some small T > 0. This means mapping F maps S into itself.
In the following, consider Fu1−Fu2 for any u1, u2 ∈ S. Based on Lemma 3.2 (3.9) and the Lipschitz

condition (4.19), we have
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∥∥∥tβ(α+1+θγ)(Fu − Fv)(t, x)
∥∥∥
Dν+θµ(Ω)

≲t(1−θ)βγ
∥∥∥tβ(α+1+θγ)(u − v)(t, x)

∥∥∥
Dν+θµ(Ω)

<
1
2

∥∥∥tβ(α+1+θγ)(u − v)(t, x)
∥∥∥
Dν+θµ(Ω)

(4.29)

for some small T , which implies mapping F is a contraction.
In terms of (4.28) and (4.29), we confirm that the mapping F has one fixed point in S, and the point

is the solution of the problem; then we established the existence of the solution.
Moreover, by use of (3.11) and (4.19), we obtain

∥∥∥∥tβ(α+1+(θ−1)γ)
∗D
α,γ
β u(t, x)

∥∥∥∥
Dν+(θ−1)µ(Ω)

≲ ∥u0(x)∥Dν(Ω) + (1 + t(1−θ)βγ) sup
τ∈(0,t)

∥∥∥τβ(α+1+θγ) f (u,∇u)
∥∥∥
Dν(Ω)

≲ ∥u0(x)∥Dν(Ω) + (1 + T (1−θ)βγ) sup
t∈(0,T )

∥∥∥τβ(α+1+θγ)u(τ, x)
∥∥∥
Dν(Ω)

≲ ∥u0(x)∥Dν(Ω) .

for some T > 0. Finally, we complete the proof of Theorem 4.4.

5. Conclusions

This research on the initial boundary value problem of nonlinear fractional diffusion equation with
the Caputo-type modification of the Erdélyi-Kober fractional derivative is an continuation of the
work [17]. Through meticulous calculations, the smooth effects of the Caputo-type modification of
the Erdélyi-Kober fractional derivative are established for the first time. Then based on this and the
embedding theorem between Hilbert scales spaces and Lebesgue spaces, the well-posedness results
are obtained with the nonlinear source term satisfying the Lipschitz condition or the gradient
nonlinearity. Compared with the diffusion problems involving a regularized hyper-Bessel operator
considered in [10, 11], we improved the interior regularity of the solution u ∈ C((0,T ];Dν+θµ(Ω)) with
order θµ if the initial datum u0 ∈ D

ν(Ω) in our research. These results seem to be meaningful in
potential applications and numerical calculations since the Caputo-type fractional models are easy to
be interpreted in physical reality, whose initial datum is described with functions and their integer
order derivatives, not any other fractional order derivatives.
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13. L. Plociniczak, M. Świtala, Existence and uniqueness results for a time-fractional
nonlinear diffusion equation, J. Math. Anal. Appl., 462 (2018), 1425–1434.
https://doi.org/10.1016/j.jmaa.2018.02.050
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