We investigate the Sturm-Liouville (S-L) operator with boundary and transfer conditions dependent on the eigen-parameter. By utilizing interval partitioning and factorization techniques of characteristic function, it is proven that this problem has a finite number of eigenvalues when the coefficients of the equation meet certain conditions, and some conditions for determining the number of eigenvalues are provided. The results indicate that the number of eigenvalues in this problem varies when the transfer conditions depend on the eigen-parameter. Furthermore, the equivalence between this problem and matrix eigenvalue problems is studied, and an equivalent matrix representation of the S-L problem is presented.
Citation: Jinming Cai, Shuang Li, Kun Li. Matrix representations of Atkinson-type Sturm-Liouville problems with coupled eigenparameter-dependent conditions[J]. AIMS Mathematics, 2024, 9(9): 25297-25318. doi: 10.3934/math.20241235
We investigate the Sturm-Liouville (S-L) operator with boundary and transfer conditions dependent on the eigen-parameter. By utilizing interval partitioning and factorization techniques of characteristic function, it is proven that this problem has a finite number of eigenvalues when the coefficients of the equation meet certain conditions, and some conditions for determining the number of eigenvalues are provided. The results indicate that the number of eigenvalues in this problem varies when the transfer conditions depend on the eigen-parameter. Furthermore, the equivalence between this problem and matrix eigenvalue problems is studied, and an equivalent matrix representation of the S-L problem is presented.
[1] | J. Weidmann, Spectral theory of ordinary differential operators, Springer, 1987. https://doi.org/10.1007/BFb0077960 |
[2] | C. Bennewitz, M. Brown, R. Weikard, Spectral and scattering theory for ordinary differential equations, Springer, 2020. https://doi.org/10.1007/978-3-030-59088-8 |
[3] | A. M. Krall, E. Bairamov, Ö. Çakar, Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, J. Differ. Equations, 151 (1999), 252–267. https://doi.org/10.1006/jdeq.1998.3519 doi: 10.1006/jdeq.1998.3519 |
[4] | X. Zhu, Z. Zheng, K. Li, Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with boundary conditions dependent on the eigenparameter, Acta Math. Sin Engl. Ser., 39 (2023), 2164–2180. https://doi.org/10.1007/s10114-023-1413-6 doi: 10.1007/s10114-023-1413-6 |
[5] | S. Goyal, S. A. Sahu, S. Mondal, Modelling of love-type wave propagation in piezomagnetic layer over a lossy viscoelastic substrate: Sturm-Liouville problem, Smart Mater. Struct., 28 (2019), 057001. https://doi.org/10.1088/1361-665X/ab0b61 doi: 10.1088/1361-665X/ab0b61 |
[6] | V. M. Markushevich, G. M. Steblov, A. S. Tsemahman, Sympletic structure of the Sturm-Liouville problem for the Rayleigh surface waves, Wave Motion, 18 (1993), 243–253. https://doi.org/10.1016/0165-2125(93)90074-P doi: 10.1016/0165-2125(93)90074-P |
[7] | T. Sandev, Ž. Tomovski, The general time fractional wave equation for a vibrating string, J. Phys. A, 43 (2010), 055204. https://doi.org/10.1088/1751-8113/43/5/055204 doi: 10.1088/1751-8113/43/5/055204 |
[8] | A. Daci, S. Tola, N. Çepa, Application of Sturm-Liouville problem in the wave equation, Int. Sci. J. Math. Model, 7 (2023), 76–79. |
[9] | A. Zettl, Sturm-Liouville theory, Amer. Math. Soc., 2005. https://doi.org/10.1090/surv/121 |
[10] | V. Kravchenko, Direct and inverse Sturm-Liouville problems: a method of solution, Springer Nature, 2020. https://doi.org/10.1007/978-3-030-47849-0 |
[11] | N. Djurić, S. Buterin, On an open question in recovering Sturm-Liouville-type operators with delay, Appl. Math. Lett., 113 (2021), 106862. https://doi.org/10.1016/j.aml.2020.106862 doi: 10.1016/j.aml.2020.106862 |
[12] | A. V. Likov, The theory of heat and mass transfer, 2 Eds., Springer-Verlag, 1963. |
[13] | O. S. Mukhtarov, K. Aydemir, Spectral analysis of $\alpha$-semi periodic 2-interval Sturm-Liouville problems, Qual. Theory Dyn. Syst., 21 (2022), 62. https://doi.org/10.1007/s12346-022-00598-7 doi: 10.1007/s12346-022-00598-7 |
[14] | Q. Kong, A. Zettl, Dependence of eigenvalues of Sturm-Liouville problems on the boundary, J. Differ. Equations, 126 (1996), 389–407. https://doi.org/10.1006/jdeq.1996.0056 doi: 10.1006/jdeq.1996.0056 |
[15] | K. Li, Y. Bai, W. Wang, F. Meng, Self-adjoint realization of a class of third-order differential operators with eigenparameter dependent boundary conditions, J. Appl. Anal. Comput., 10 (2020), 2631–2643. https://doi.org/10.11948/20200002 doi: 10.11948/20200002 |
[16] | C. T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinb., 77 (1977), 293–308. https://doi.org/10.1017/S030821050002521X doi: 10.1017/S030821050002521X |
[17] | C. T. Fulton, Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions, Proc. R. Soc. Edinb., 87 (1980), 1–34. https://doi.org/10.1017/S0308210500012312 doi: 10.1017/S0308210500012312 |
[18] | R. E. Langer, A problem in diffusion or in the flow of heat for a solid in contact with a fluid, Tohoku Math. J., 35 (1932), 260–275. |
[19] | W. Peddie, Note on the cooling of a sphere in a mass of well-stirred liquid, Proc. Edinb. Math. Soc., 19 (1900), 34–35. https://doi.org/10.1017/S0013091500032582 doi: 10.1017/S0013091500032582 |
[20] | R. L. Peek, Solution to a problem in diffusion employing a non-orthogonal sine series, Ann. Math., 30 (1928), 265–269. https://doi.org/10.2307/1968278 doi: 10.2307/1968278 |
[21] | C. Yang, V. N. Pivovarchik, Inverse nodal problem for Dirac system with spectral parameter in boundary conditions, Complex Anal. Oper. Theory, 7 (2013), 1211–1230. https://doi.org/10.1007/s11785-011-0202-x doi: 10.1007/s11785-011-0202-x |
[22] | C. L. Prather, J. K. Shaw, On the oscillation of differential transforms of eigenfunction expansions, Trans. Amer. Math. Soc., 280 (1983), 187–206. https://doi.org/10.1090/S0002-9947-1983-0712255-9 doi: 10.1090/S0002-9947-1983-0712255-9 |
[23] | L. Zhang, J. Ao, Inverse spectral problem for Sturm-Liouville operator with coupled eigenparameter dependent boundary conditions of Atkinson type, Inverse Probl. Sci. Eng., 27 (2019), 1689–1702. https://doi.org/10.1080/17415977.2018.1564749 doi: 10.1080/17415977.2018.1564749 |
[24] | Q. Kong, H. Wu, A. Zettl, Sturm-Liouville problems with finite spectrum, J. Math. Anal. Appl., 263 (2001), 748–762. https://doi.org/10.1006/jmaa.2001.7661 doi: 10.1006/jmaa.2001.7661 |
[25] | E. Şen, A class of second-order differential operators with eigenparameter-dependent boundary and transmission conditions, Math. Methods Appl. Sci., 37 (2014), 2952–2961. https://doi.org/10.1002/mma.3033 doi: 10.1002/mma.3033 |
[26] | C. Bartels, S. Currie, B. A. Watson, Sturm-Liouville problems with transfer condition Herglotz-dependent on the eigenparameter: eigenvalue asymptotics, Complex Anal. Oper. Theory, 15 (2021), 71. https://doi.org/10.1007/s11785-021-01119-1 doi: 10.1007/s11785-021-01119-1 |
[27] | Z. Akdoğan, M. Demirci, O. S. Mukhtarov, Green function of discontinuous boundary-value problem with transmission conditions, Math. Methods Appl. Sci., 30 (2007), 1719–1738. https://doi.org/10.1002/mma.867 doi: 10.1002/mma.867 |
[28] | N. Zhang, J. Ao, Finite spectrum of Sturm-Liouville problems with transmission conditions dependent on the spectral parameter, Numer. Func. Anal. Opt., 44 (2023), 21–35. https://doi.org/10.1080/01630563.2022.2150641 doi: 10.1080/01630563.2022.2150641 |
[29] | F. V. Atkinson, Discrete and continuous boundary value problems, 2 Eds., Academic Press, 1964. |
[30] | H. Dai, Inverse eigenvalue problem for Jacobi matrices, Chin. J. Comput. Phys., 11 (1994), 451–456. |
[31] | W. N. Gansterer, R. C. Ward, R. P. Muller, W. A. Goddard, Computing approximate eigenpairs of symmetric block tridiagonal matrices, SIAM J. Sci. Comput., 25 (2003), 65–85. https://doi.org/10.1137/S1064827501399432 doi: 10.1137/S1064827501399432 |
[32] | B. Igelnik, D. Simon, The eigenvalues of a tridiagonal matrix in biogeography, Appl. Math. Comput., 218 (2011), 195–201. https://doi.org/10.1016/j.amc.2011.05.054 doi: 10.1016/j.amc.2011.05.054 |
[33] | Y. H. Xu, E. X. Jiang, An inverse eigenvalue problem for periodic Jacobi matrices, Inverse Probl., 23 (2007), 165–181. https://doi.org/10.1088/0266-5611/23/1/008 doi: 10.1088/0266-5611/23/1/008 |
[34] | J. Ao, J. Sun, Matrix representations of fourth-order boundary value problems with coupled or mixed boundary conditions, Linear Multilinear Algebra, 63 (2015), 1590–1598. https://doi.org/10.1080/03081087.2014.959515 doi: 10.1080/03081087.2014.959515 |
[35] | J. Ao, J. Sun, M. Zhang, The finite spectrum of Sturm-Liouville problems with transmission conditions and eigenparameter dependent boundary conditions, Results Math., 63 (2013), 1057–1070. https://doi.org/10.1007/s00025-012-0252-z doi: 10.1007/s00025-012-0252-z |
[36] | J. Cai, Z. Zheng, Matrix representations of Sturm-Liouville problems with coupled eigenparameter dependent boundary conditions and transmission conditions, Math. Methods Appl. Sci., 41 (2018), 3495–3508. https://doi.org/10.1002/mma.4842 doi: 10.1002/mma.4842 |