Research article Special Issues

A note on explicit conditions for diagonal stability

  • Received: 25 June 2024 Revised: 13 August 2024 Accepted: 22 August 2024 Published: 29 August 2024
  • MSC : 15A45, 15B48, 34D20, 37C75, 93D05

  • In this short note, we presented a number of alternative explicit necessary and sufficient conditions for diagonal stability along with a new proof of a well-known result in this regard.

    Citation: Ali Algefary, Jianhong Xu. A note on explicit conditions for diagonal stability[J]. AIMS Mathematics, 2024, 9(9): 25253-25260. doi: 10.3934/math.20241232

    Related Papers:

  • In this short note, we presented a number of alternative explicit necessary and sufficient conditions for diagonal stability along with a new proof of a well-known result in this regard.



    加载中


    [1] D. Hershkowitz, Recent directions in matrix stability, Linear Algebra Appl., 171 (1992), 161–186. https://doi.org/10.1016/0024-3795(92)90257-B doi: 10.1016/0024-3795(92)90257-B
    [2] O. Kushel, Unifying matrix stability concepts with a view to applications, SIAM Review, 61 (2019), 643–729. https://doi.org/10.1137/18M119241X doi: 10.1137/18M119241X
    [3] S. Mey, Control Techniques for Complex Networks, Cambridge: Cambridge University Press, 2008. https://doi.org/10.1017/CBO9780511804410
    [4] J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge: Cambridge University Press, 1998. https://doi.org/10.1017/CBO9781139173179
    [5] E. Kaszkurewicz, A. Bhaya, Matrix Diagonal Stability in Systems and Computation, Berlin: Springer Science and Business Media, 2012. https://doi.org/10.1007/978-1-4612-1346-8
    [6] G. Barker, P. Berman, R. Plemmons, Positive diagonal solutions to the Lyapunov equations, Linear Multil. Algebra, 5 (1978), 249–256. https://doi.org/10.1080/03081087808817203 doi: 10.1080/03081087808817203
    [7] J. Kraaijevanger, A characterization of Lyapunov diagonal stability using Hadamard products, Linear Algebra Appl., 151 (1991), 245–254. https://doi.org/10.1016/0024-3795(91)90366-5 doi: 10.1016/0024-3795(91)90366-5
    [8] G. Cross, Three types of matrix stability, Linear Algebra Appl., 20 (1978), 253–263. https://doi.org/10.1016/0024-3795(78)90021-6 doi: 10.1016/0024-3795(78)90021-6
    [9] R. Redheffer, Volterra multipliers Ⅱ, SIAM J. Algebr. Dis. Meth., 6 (1985), 592–611. https://doi.org/10.1137/0606059 doi: 10.1137/0606059
    [10] M. Gumus, J. Xu, On common diagonal Lyapunov solutions, Linear Algebra Appl., 507 (2016), 32–50. https://doi.org/10.1016/j.laa.2016.05.032 doi: 10.1016/j.laa.2016.05.032
    [11] R. Shorten, N. Kumpati, On a theorem of Redheffer concerning diagonal stability, Linear Algebra Appl., 431 (2009), 2317–2329. https://doi.org/10.1016/j.laa.2009.02.035 doi: 10.1016/j.laa.2009.02.035
    [12] A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical Sciences, New York: Society for Industrial and Applied Mathematics, 1994. https://doi.org/10.1137/1.9781611971262
    [13] F. Zhang, The Schur Complement and its Applications, Berlin: Springer Science and Business Media, 2006. https://doi.org/10.1007/b105056
    [14] N. Oleng, K. Narendra, On the existence of diagonal solutions to the Lyapunov equation for a third order system, In: Proceedings of the 2003 American Control Conference, 4 (2003), 2761–2766. https://doi.org/10.1109/ACC.2003.1243497
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(440) PDF downloads(42) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog