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1. Introduction

Throughout this note, we shall deal with real square matrices only. A matrix A is called (Lyapunov)
diagonally stable if there exists a positive diagonal matrix D such that

DA + AT D

is positive definite. We comment that in practice, the setting of DA + AT D being negative definite is
commonly used. We switch this to being positive definite so the notion of P-matrices can be handled
more conveniently. The existence of such matrix D means that

V(x) = xT Dx

is a diagonal quadratic Lyapunov function for a linear system in the form

ẋ(t) = Ax(t).

For detailed background material and existing results on diagonal stability, as well as its connection
to other types of matrix stability, we refer the reader to the surveys in [1, 2].
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This type of matrix stability has various applications in networks [3], dynamical systems [4], and
computations [5]. The study of diagonal stability is of considerable importance, addressing both
theoretical and practical aspects.

Despite significant research efforts, determining the diagonal stability of a matrix remains a difficult
problem. Two most notable characterizations for the diagonal stability of a matrix A ∈ Rn×n can be
found in the literature. First, it was shown in [6] that a necessary and sufficient condition for A to
be diagonally stable is the existence of a positive diagonal entry in AH, where H is any nonzero
positive semi-definite matrix. The other, see [7], depends on the P- matrix property of the Hadamard
multiplication A with any positive semi-definite matrix S with sii , 0 for all i. Recall that a matrix
A ∈ Rn×n is said to be a P-matrix if all its principal minors are positive.

A well-known necessary condition [8] for A to be diagonally stable is that A must be a P-matrix.
This P-matrix condition is also sufficient when A is 2×2; see [6]. Such a condition is said to be explicit
because it can be checked directly using the entries of A.

For diagonal stability of a 3×3 matrix, two explicit necessary and sufficient conditions can be found
in the literature. The first one is as follows.

Theorem 1.1. [7, Theorem 4.1] A 3 × 3 matrix A = [ai, j] is diagonally stable if, and only if,

(i) A is a P-matrix, and

(ii) max{1, ω1, ω2, ω3} <
1
2

(1 + ω1 + ω2 + ω3), where ωi =
√

ai,i
(
A−1)

i,i, i = 1, 2, 3.

The second one [8, Theorem 4] is not as explicit as the above since it is formulated as a pair of
quadratic inequalities. An alternative and more transparent proof of this result can be found in [9]. The
results in [9] are further explored in [10, 11].

This note shall concern Theorem 1.1 only. It should be pointed out here that no explicit necessary
and sufficient condition is known for cases beyond 3 × 3. The main difficulty for this situation is due
to the much larger number of parameters being involved in cases of higher dimensions.

The proof of Theorem 1.1 in [7] is done by establishing a positive lower bound for a multivariable
objective function through some rather sophisticated parametrization and algebraic manipulations.
This has been the main motivation for this note. Our goals are to present a more transparent proof of
Theorem 1.1 by first establishing a number of elementary algebraic inequalities and, along the way, to
formulate several useful alternative explicit necessary and sufficient conditions for diagonal stability.

Before introducing some preliminary existing results, let us set the stage first. Given two matrices
A and B of the same size, they are said to share a common diagonal solution if there exists a positive
diagonal matrix D such that

DA + AT D and DB + BT D

are both positive definite. In addition, we denote by M = [mi, j] the matrix of minors of A, i.e. mi, j is
the determinant of the sub-matrix obtained from A by deleting its ith row and jth column.

We now quote the following two results from [10], which will serve as our starting point.

Lemma 1.1. [10, Theorem 2.1] A 3 × 3 matrix A = [ai, j] is diagonally stable if, and only if,

(i) a3,3 > 0, and

(ii) Â =
[

a1,1 a1,2

a2,1 a2,2

]
and S =

1
a3,3

[
m2,2 m2,1

m1,2 m1,1

]
share a common diagonal solution.
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Note that the matrix S in Lemma 1.1 is the Schur complement of a3,3 in A. For background material,
see, for example, [12, 13].

Lemma 1.2. [10, Corollary 2.4] Two 2 × 2 matrices A1 = [a(1)
i, j ] and A2 = [a(2)

i, j ] share a common
diagonal solution if, and only if,

(i) A1 and A2 are P-matrices, and

(ii) maxk x(k)
1 < mink x(k)

2 , where, for k = 1, 2,

x(k)
1 =

 a(k)
1,2√

a(k)
1,1a(k)

2,2 +
√

det Ak


2

and x(k)
2 =


√

a(k)
1,1a(k)

2,2 +
√

det Ak

a(k)
2,1


2

.

In Lemma 1.2, by convention, x(k)
2 = +∞ if the respective a(k)

2,1 = 0.

2. Main results

Let us start with a few technical lemmas.

Lemma 2.1. Suppose that 0 < α < β ≤ γ < δ such that αδ = βγ = λ. Then,

β + γ < α + δ.

Proof. The conclusion is equivalent to
λ

γ
+ γ <

λ

δ
+ δ. (2.1)

Note that γ ≥
√
λ and δ >

√
λ. Define ϕ(t) =

λ

t
+ t, where t ≥

√
λ. Since ϕ′(t) = −

λ

t2 + 1 > 0 for

t >
√
λ, ϕ(t) is a strictly increasing function on t ≥

√
λ. Thus, (2.1) follows. □

In a similar way, we can easily show the following lemma whose proof is thus omitted.

Lemma 2.2. Suppose that 0 < α ≤ β < γ ≤ δ such that αδ = βγ = λ. Then,

β + γ ≤ α + δ.

The next lemma is a slightly enhanced version of [14, Lemma 1].

Lemma 2.3. [10, Lemma 3.3] For any positive numbers a, b, c, and d, the following are equivalent:

(i) (a + b)2 − (c − d)2 > 0 and (c + d)2 − (a − b)2 > 0.

(ii) max{a, b, c, d} <
1
2

(a + b + c + d).

Lemmas 1.1 and 1.2 lead directly to the result below, which is an alternative explicit necessary and
sufficient condition for diagonal stability.

Theorem 2.1. A 3 × 3 matrix A is diagonally stable if, and only if,
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(i) A is a P-matrix,

(ii)
(

a1,2
√

a1,1a2,2 +
√

m3,3

)2

<

 √m1,1m2,2 +
√

a3,3 det A
m1,2

2

= µ, and

(iii)

 m2,1
√

m1,1m2,2 +
√

a3,3 det A

2

<

( √
a1,1a2,2 +

√
m3,3

a2,1

)2

= ν.

Proof. According to Lemma 1.1, the diagonal stability of A ∈ R3×3 is equivalent to: (i)′ a33 > 0, and

(ii)′ A1 =

[
a1,1 a1,2

a2,1 a2,2

]
and A2 =

1
a3,3

[
m2,2 m2,1

m1,2 m1,1

]
share a common diagonal solution.

Now, by Lemma 1.2, condition (ii)′ is equivalent to: (iii)′ A1 and A2 being P-matrices, and (iv)′

maxk x(k)
1 < mink x(k)

2 , where

x(k)
1 =

 a(k)
1,2√

a(k)
1,1a(k)

2,2 +
√

det Ak


2

and x(k)
2 =


√

a(k)
1,1a(k)

2,2 +
√

det Ak

a(k)
2,1


2

.

From (i)′ and (iii)′, (i) follows easily. Additionally, by noting that det A = a3,3 det S , and the
condition maxk x(k)

1 < mink x(k)
2 is equivalent to x(2)

1 < x(1)
2 and x(1)

1 < x(2)
2 , we obtain (ii) and (iii). □

We comment that since A is a P-matrix, all the square roots in Theorem 2.1 are well-defined and
positive. Similar to Lemma 1.2, µ and ν are interpreted as +∞ when the respective m1,2 and a2,1 are
zero.

A consequence of Theorem 2.1 is the following, whose proof is straightforward and hence omitted.

Corollary 2.1. Let A be a 3 × 3 matrix such that a1,2, a2,1, m1,2 and m2,1 are all nonzero. Then, A is
diagonally stable if, and only if,

(i) A is a P-matrix,

(ii)
(

a1,2
√

a1,1a2,2 +
√

m3,3

)2

<

 √m1,1m2,2 +
√

a3,3 det A
m1,2

2

,

(iii)
( √

a1,1a2,2 −
√

m3,3

a2,1

)2

<

 m2,1
√

m1,1m2,2 −
√

a3,3 det A

2

,

(iv)

 m2,1
√

m1,1m2,2 +
√

a3,3 det A

2

<

( √
a1,1a2,2 +

√
m3,3

a2,1

)2

, and

(v)

 √m1,1m2,2 −
√

a3,3 det A
m1,2

2

<

(
a1,2

√
a1,1a2,2 −

√
m3,3

)2

.

Next, using Theorem 2.1 and Corollary 2.1, we shall present another alternative explicit necessary
and sufficient condition for diagonal stability.
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For convenience, let us define

u1 =
(√

a1,1a2,2 −
√

m3,3

) (√
m1,1m2,2 −

√
a3,3 det A

)
,

u2 =
(√

a1,1a2,2 +
√

m3,3

) (√
m1,1m2,2 +

√
a3,3 det A

)
,

v1 = a1,2m1,2, and v2 = a2,1m2,1.

Observe
u1u2 = v1v2. (2.2)

Then, we can state the following.

Theorem 2.2. A 3 × 3 matrix A is diagonally stable if, and only if,

(i) A is a P-matrix, and

(ii) v2
1 + v2

2 < u2
1 + u2

2.

Proof. It suffices to show that condition (ii) here is equivalent to the corresponding conditions in
Theorem 2.1 and Corollary 2.1.

When a1,2 = 0, conditions (ii) and (iii) in Theorem 2.1 reduce to v2
2 < u2

2 and, hence, are equivalent
to v2

1 + v2
2 < u2

1 + u2
2 since u1 = v1 = 0. Similarly, when a2,1 = 0, conditions (ii) and (iii) in Theorem 2.1

become v2
1 < u2

2, i.e., v2
1 + v2

2 < u2
1 + u2

2 since u1 = v2 = 0. Clearly, such an argument applies also to the
cases when either m1,2 = 0 or m2,1 = 0. Theorem 2.2, therefore, holds when any of the a1,2, a2,1, m1,2,
or m2,1 is zero.

We assume next that a1,2, a2,1, m1,2, and m2,1 are nonzero. Consequently, u2
1, u

2
2, v

2
1, v

2
2 are all positive.

Besides, u2
1 < u2

2.
Suppose that conditions (ii) through (v) in Corollary 2.1 hold, i.e.,

u2
1 < v2

1, v
2
2 and v2

1, v
2
2 < u2

2. (2.3)

Without loss of generality, we assume u2
1 < v2

1 ≤ v2
2 < u2

2. Besides, by (2.2), u2
1u2

2 = v2
1v2

2. These,
accordingly to Lemma 2.1, imply condition (ii) here.

Conversely, assume that condition (ii) here holds but (2.3) is not satisfied. Let us consider the
following possible scenarios:

• If u2
1 ≥ v2

1 and u2
2 > v2

2, then u2
1u2

2 > v2
1v2

2, which contradicts (2.2).

• If u2
1 < v2

1 and u2
2 ≤ v2

2, then u2
1u2

2 < v2
1v2

2, which again contradicts (2.2).

• If u2
1 ≥ v2

1 and u2
2 ≤ v2

2, then v2
1 ≤ u2

1 < u2
2 ≤ v2

2. By Lemma 2.2, we obtain u2
1 + u2

2 ≤ v2
1 + v2

2, which
contradicts condition (ii) here.

The above analysis shows that (2.3) must hold. The proof is now complete. □

We are now ready to present a new proof of Theorem 1.1.
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Proof of Theorem 1.1. It suffices to show that condition (ii) in Theorem 1.1 and condition (ii) in
Theorem 2.2 are equivalent.

It is easy to verify

u1 + u2 = 2
√

a1,1a2,2m1,1m2,2 + 2
√

a3,3m3,3 det A > 0. (2.4)

Moreover, we have

a1,1m1,1 + a2,2m2,2 − a3,3m3,3 − det A = a1,2m1,2 + a2,1m2,1. (2.5)

By Lemma 2.3 and (A−1)i,i =
mi,i

det A
for all i, condition (ii) in Theorem 1.1 is equivalent to

(√
a1,1m1,1 +

√
a2,2m2,2

)2
−

(√
a3,3m3,3 −

√
det A

)2
> 0 (2.6)

and (√
a3,3m3,3 +

√
det A

)2
−

(√
a1,1m1,1 −

√
a2,2m2,2

)2
> 0. (2.7)

Expanding these expressions and using (2.4) and (2.5), we see that (2.6) and (2.7) are equivalent to

−u1 − u2 < v1 + v2 < u1 + u2,

i.e.
(v1 + v2)2 < (u1 + u2)2.

Next, by (2.2), the above is equivalent to

v2
1 + v2

2 < u2
1 + u2

2,

i.e. condition (ii) in Theorem 2.2. This completes the proof. □

Example 2.1. Consider the matrix

A =


1 −3 2
6 2 −1
−6 −1 3

 .
It is clear that A is a P-matrix. Additionally, we have

A−1 =
1

53


5 7 −1
−12 15 13

6 19 20

 .
Thus, we find that ω1 =

√
1 · 5

53 = 0.307, ω2 =

√
2 · 15

53 = 0.752, and ω3 =

√
3 · 20

53 = 1.064. Since

max{1, ω1, ω2, ω3} = 1.064 <
1
2

(1 + ω1 + ω2 + ω3) = 1.562, we conclude from Theorem 1.1 that A is

indeed diagonally stable. In fact, the matrix D =


1

0.9
0.65

 satisfies the condition that DA + AT D

is positive definite.
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3. Conclusions

Explicit necessary and sufficient conditions for the diagonal stability are very interesting
research problems due to their simplicity to verify. However, no such results exist for matrices
beyond 3 × 3. In this short paper, we provide a shorter and more transparent proof of a well-known
explicit characterization for the 3 × 3 case [7]. Our new proof relies on Redheffer’s result [9, 11],
which has been restated in [10] using the notion of Schur complements. Furthermore, we derive
additional equivalent explicit conditions for the diagonal stability of a matrix A ∈ R3×3. A natural
direction for future work is developing similar results for higher dimension matrices.
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