In this paper, we prove that a three-dimensional CR-warped product submanifold of a nearly Kaehler six-dimensional sphere, under some restrictions, contains finite fundamental groups. Using another approach from the theory of eigenvalues and also the gradient of Ricci curvature, we obtain similar results.
Citation: Noura Alhouiti, Fatemah Mofarreh, Fatemah Abdullah Alghamdi, Akram Ali, Piscoran-Ioan Laurian. Geometric topology of CR-warped products in six-dimensional sphere[J]. AIMS Mathematics, 2024, 9(9): 25114-25126. doi: 10.3934/math.20241224
In this paper, we prove that a three-dimensional CR-warped product submanifold of a nearly Kaehler six-dimensional sphere, under some restrictions, contains finite fundamental groups. Using another approach from the theory of eigenvalues and also the gradient of Ricci curvature, we obtain similar results.
[1] | M. Antic, M. Djoric, L. Vrancken, Characterization of totally geodesic totally real 3-dimensional submanifolds in the 6-sphere, Acta Math. Sinica, 22 (2006), 1557–1564. https://doi.org/10.1007/s10114-005-0798-8 doi: 10.1007/s10114-005-0798-8 |
[2] | M. Berger, Les variétés riemanniennes $(\frac{1}{4})$-pincées, Ann. Scuola Norm.-SCI, 14 (1960), 161–170. |
[3] | A. Bejancu, Geometry of CR-Submanifolds, Dordrecht: Springer, 1986. https://doi.org/10.1007/978-94-009-4604-0 |
[4] | R. L. Bishop, B. O'Neil, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1–49. https://doi.org/10.1090/S0002-9947-1969-0251664-4 doi: 10.1090/S0002-9947-1969-0251664-4 |
[5] | R. L. Bryant, Second order families of special Lagrangian 3-folds, In: Perspectives in Riemannian geometry, CRM Proceedings and Lecture Notes, 2006, 63–98. https://doi.org/10.1090/crmp/040 |
[6] | J. B. Butruille, Homogeneous nearly Käehler manifolds, In: Handbook of Pseudo-Riemannian geometry and supersymmetry, European Mathematical Society, 2010,399–423. https://doi.org/10.4171/079-1/11 |
[7] | B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifold I, Monatsh. Math., 133 (2001), 177–195. https://doi.org/10.1007/978-94-009-4604-0 doi: 10.1007/978-94-009-4604-0 |
[8] | B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds Ⅱ, Monatsh. Math., 134 (2001), 103–119. https://doi.org/10.1007/s006050170002 doi: 10.1007/s006050170002 |
[9] | B. Y. Chen, CR-warped products in complex projective spaces with compact holomorphic factor, Monatsh. Math., 141 (2004), 177–186. https://doi.org/10.1007/s00605-002-0009-y doi: 10.1007/s00605-002-0009-y |
[10] | B. Y. Chen, Geometry of warped product submanifolds: A survey, J. Adv. Math. Stud., 6 (2013), 1–43. |
[11] | B. Y. Chen, Differential geometry of warped product manifolds and submanifolds, World scientific, 2017. https://doi.org/10.1142/10419 |
[12] | S. Deshmukh, T. Ghazal, CR-submanifolds of the six-dimensional sphere, Math. Chron., 18 (1989), 31–35. |
[13] | F. Dillen, L. Verstraelen, L. Vrancken, On almost complex surfaces of the nearly Keahler 6-sphere Ⅱ, Kodai Math. J., 10 (1998), 261–271. https://doi.org/10.2996/kmj/1138037456 doi: 10.2996/kmj/1138037456 |
[14] | N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Amer. Math. Soc., 83 (1981), 759–763. |
[15] | T. Fukami, S. Ishihara, Almost Hermitian structures on $\mathbb{S}^6$, Töhoku Math. J., 7 (1955), 151–156. https://doi.org/10.2748/tmj/1178245052 doi: 10.2748/tmj/1178245052 |
[16] | H. Hashimoto, K. Mashimo, On some 3-dimensional CR submanifolds in $\mathbb{S}^6$, Nagoya Math. J., 156 (1999), 171–185. https://doi.org/10.1017/S0027763000007121 doi: 10.1017/S0027763000007121 |
[17] | Z. Hu, C. Xing, On the Ricci curvature of 3-submanifolds in the unit sphere, Arch. Math., 115 (2020), 727–735 https://doi.org/10.1007/s00013-020-01515-7 doi: 10.1007/s00013-020-01515-7 |
[18] | L. Jäntschi, The eigenproblem translated for alignment of molecules, Symmetry, 11 (2019), 1027. https://doi.org/10.3390/sym11081027 doi: 10.3390/sym11081027 |
[19] | L. Jäntschi, Eigenproblem basics and algorithms, Symmetry, 15 (2023), 2046. https://doi.org/10.3390/sym15112046 doi: 10.3390/sym15112046 |
[20] | H. B. Lawson, J. Simons, On stable currents and their application to global problems in real and complex geometry, Ann. Math., 98 (1973), 427–450. https://doi.org/10.2307/1970913 doi: 10.2307/1970913 |
[21] | P. F. Leung, Minimal submanifolds in a sphere, Math. Z., 183 (1983), 75–86. https://doi.org/10.1007/BF01187216 doi: 10.1007/BF01187216 |
[22] | P. F. Leung., On a relation between the topology and the intrinsic and extrinsic geometries of a compact submanifold, P. Edinburgh Math. Soc., 28 (1985) 305–311. https://doi.org/10.1017/S0013091500017119 |
[23] | H. Li, Curvature pinching for odd-dimensional minimal submanifolds in a sphere, Publications de l'Institut Mathématique, 53 (1993), 122–132. |
[24] | T. Liu, T. M. H. Sharfi, Q. Ma, Time-dependent asymptotic behavior of the solution for an evolution equation with linear memory, AIMS Mathematics, 8 (2023), 16208–16227. https://doi.org/10.3934/math.2023829 doi: 10.3934/math.2023829 |
[25] | J. Liu, Q. Zhang, Non-existence of stable currents in submanifolds of the Euclidean spaces, J. Geom., 96 (2009), 125–133. https://doi.org/10.1007/s00022-010-0024-4 doi: 10.1007/s00022-010-0024-4 |
[26] | Z. Lu. Normal scalar curvature conjecture and its applications, J. Funct. Anal., 261 (2011), 1284–1308. https://doi.org/10.1016/j.jfa.2011.05.002 |
[27] | S. Major, D. Rideout, S. Surya, Stable homology as an indicator of manifold likeness in causal set theory, Class. Quantum Grav., 26 (2009), 175008. https://doi.org/10.1088/0264-9381/26/17/175008 doi: 10.1088/0264-9381/26/17/175008 |
[28] | R. Penrose, Techniques of differential topology in relativity, Society for Industrial and Applied Mathematics, 1972. |
[29] | B. Sahin, R. GuneS, CR-warped product submanifolds of nearly Kaehler manifolds, Beiträge zur Algebra und Geometrie, 49 (2008), 383–397. |
[30] | F. Şahin Homology of submanifolds of six-dimensional sphere, J. Geom. Phys., 145 (2019), 103471. https://doi.org/10.1016/j.geomphys.2019.07.002 |
[31] | F. Şahin, B. Şahin, A topological sphere theorem for contact CR-warped product submanifolds of an odd-dimensional unit sphere, Math. Slovaca, 72 (2022), 737–744 https://doi.org/10.1515/ms-2022-0050 doi: 10.1515/ms-2022-0050 |
[32] | K. Sekigawa, Some CR-submanifolds in a 6-dimensional sphere, Tensor (N.S.), 1984, 13–20. |
[33] | Y. B. Shen, Curvature pinching for three-dimensional minimal submanifolds in a Sphere, Proc. Amer. Math. Soc., 115 (1992), 791–795. |
[34] | H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact solutions of Einstein's field equations, Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511535185 |
[35] | S. Surya, Causal set topology, Theor. Comput. Sci., 405 (2008), 188–197. https://doi.org/10.1016/j.tcs.2008.06.033 |
[36] | G. E. Vîlcu, Ruled CR-submanifolds of locally conformal Kaehler manifolds, J. Geom. Phys., 62 (2012), 1366–1372. https://doi.org/10.1016/j.geomphys.2012.02.004 doi: 10.1016/j.geomphys.2012.02.004 |
[37] | L. Xu, H. Bi, A multigrid discretization scheme of discontinuous Galerkin method for the Steklov-Lamé eigenproblem, AIMS Mathematics, 8 (2023), 14207–14231. https://doi.org/10.3934/math.2023727 doi: 10.3934/math.2023727 |
[38] | K. Yano, M. Kon, Structures on manifolds, World Scientific, 1985. |
[39] | X. Zhang, Non-existence of stable currents in submanifolds of a product of two spheres, Bull. Aust. Math. Soc., 44 (1991), 325–336. https://doi.org/10.1017/S0004972700029762 doi: 10.1017/S0004972700029762 |