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1. Introduction

The finite fundamental group (also known as the fundamental groupoid) of a space is a
generalization of the fundamental group, which considers not just loops based at a single point but
also paths and homotopies between loops that start and end at different points. The study of finite
fundamental groups has many applications in several branches of mathematics. From an algebraic
topological point of view, the finite fundamental groups are important objects of study in algebraic
topology as they provide a way to distinguish between spaces that have different homotopic
properties. In particular, the classification of finite fundamental groups of surfaces is a classical
problem in algebraic topology. Given representation theory, the finite fundamental group of a space
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can be used to construct representations of the group in terms of linear transformations on vector
spaces. This leads to the study of the representation theory of finite groups, which has applications in
many areas of mathematics and physics (see, for instance, [1, 20, 22, 28, 34, 35]).

The six-dimensional nearly Kähler manifolds are special classes of six-dimensional Riemannian
manifolds that possess a nearly Kähler structure. A nearly Kähler structure is a Riemannian structure
that satisfies all the axioms of a Kähler structure except the integrability condition of the complex
structure [38]. This means that the almost complex structure of a nearly Kähler manifold is not
necessarily integrable, but it is “as close as possible” to being integrable. A nearly Kähler structure is
equivalent to a Hermitian structure with a closed, non-degenerate 3-form in the six-dimensional
manifold. Using the warped product theory and also the notion of CR-submanifolds [3] and warped
product manifolds [4]. Chen defined the CR-warped product submanifold of almost Hermitian
manifolds in his series of papers [7–9]. Later, such submanifolds have been studied by many authors
for example [10, 11, 17, 33, 36]. From Hiepko’s result, we know that if a manifold is a warped product
manifold, it has two integrable distributions. Deshmukh and Ghazal [12] proved the non-existence of
a 4-dimensional CR-submanifold with an integrable, totally real distribution D⊥ on S6. Therefore,
one has to consider only three-dimensional CR-warped product submanifolds of nearly Kaehler
six-spheres . We note that Sekigawa [32] obtained an example of a three-dimensional warped product,
the CR-submanifold of S6 . Later, this example was generalized by Hashimoto and Mashimo [16]. As
a conclusion, there are many three-dimensional CR-warped product submanifolds in S6 [29].

On the other hand, Sahin and Sahin [31] have examined compact minimum contact
CR-submanifolds of odd-dimensional unit spheres and derived topological sphere theorems.
According to their results, CR-warped product submanifolds of odd-dimensional unit spheres are
homeomorphic to the sphere if an inequality involving warping function and fiber scalar curvature is
satisfied. As an example, it has been shown that for a 5-dimensional unit sphere, a 4-dimensional
compact minimal contact CR-warped product submanifold is homeomorphic to the sphere if
‖∇ ln f ‖2 < 1 is satisfied. Here, f represents a non-constant warping function. Another result obtained
by the same authors when they applied Bonnet–Myers’s theorem is about the fundamental group and
they also obtained another result about homology groups by applying Leung’s theorem. Inspired by
the above results, we extend such a hypothesis in the setting of CR-warped products in nearly
Kaehler’s six-dimensional sphere.

2. Basic ideas

In this section, we recall some basic notions, formulas, and definitions of the nearly Kahler structure
of S6 (see, for instance, [13–15] for more detail). Suppose {u0, u1, · · · , u7} is the standard frame for R8.
Thus, all points r ∈ R8 are uniquely introduced as r = λu0 + x, for some real number λ and x ∈
span{u1, · · · , u7}. Hence, r can be regarded as a Cayley number. If λ = 0, r can be viewed as purely
imaginary. For x1, x2, two purely imaginary Cayley numbers, the multiplication “·” can be defined as:

x1 · x2 =< x1, x2 > u0 + x1 × x2,

where “×” is defined as follows:

AIMS Mathematics Volume 9, Issue 9, 25114–25126.



25116

ui × u j 1 2 3 4 5 6 7
1 0 u3 −u2 u5 −u4 u7 −u6

2 −u3 0 u1 u6 −u7 −u4 u5

3 u2 −u1 0 −u7 −u6 u5 u4

4 −u5 −u6 u7 0 u1 u2 −u3

5 u4 u7 u6 −u1 0 −u3 −u2

6 −u7 u4 −u5 −u2 u3 0 u1

7 u6 −u5 −u4 u3 u2 −u1 0

We can check that the multiplication “×” is not commutative and not associative. Suppose C+ is the
set of all Cayley numbers that are pure and imaginary. Now, this set

S6(1) =
{
x ∈ C+| < x, x >= 1

}
,

denotes the 6-dimensional unit sphere with the origin as a center. The perpendicular subspace of C+

to p ∈ S6 forms the tangent space TpS
6 of S6. The almost complex structure J on TpS

6, which is an
endomorphism that is J2 = −Id, can be defined as:

JpZ1 = p ×Z1,

where p ∈ S6(1), Z1 ∈ TpS
6. The compact Lie group G2 is the group of automorphisms of C. G2

works normally at S6(1) and maintains J and the metric at S6(1). Now, to obtain the nearly Kahler
structure on (S6, < ·, · >, J), let us define G(Z1,Z2) = (∇̃Z1J)Z2, for Z1,Z2 ∈ Γ(S6) and ∇̃ Levi–
Civita connection at S6. It is clear that if G(Z1,Z1) = 0, then (∇̃Z1J)Z1 = 0. The above almost
complex structure J, together with the induced Riemannian metric g on S6, gives the following nearly
Kaehlerian structure [15]

J2 = −I, g(JZ1, JZ2) = g(Z1,Z2), (∇̃Z1J)Z1 = 0. (2.1)

Hence, the curvature tensor R̃ of S6 is defined by

R̃(Z1,Z2,Z3,Z4) = g(Z1,Z4)g(Z2,Z3) − g(Z1,Z3)g(Z2,Z4), (2.2)

∀ Z1,Z2,Z3,Z4 ∈ Γ(TS6).
Let us assume that N is a 2m-dimensional Riemannian submanifold of a nearly Kähler manifold,

Ñ2m. Let us denote by Γ(TN) the section of the tangent bundle of N and by Γ(TN⊥) the set of all
normal vector fields of N , respectively. ∇ represents here the Levi–Civita connection on the tangent
bundle TN , and ∇⊥ represents here the Levi–Civita connection on the normal bundle TN⊥,
respectively. Thus, the Gauss and Weingarten formulas are given by:

∇Z1Z2 =∇Z1Z2 + B(Z1,Z2), (2.3)

∇Z1ξ = − AξZ1 + ∇⊥
Z1
ξ, (2.4)

for all Z1,Z2 ∈ Γ(TN) and ξ ∈ Γ(TN⊥), where Aξ and B are the shape operators and respectively of
the second fundamental form, given by:

g(AξZ1,Z2) = g(B(Z1,Z2), ξ). (2.5)
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The submanifold N is totally umbilical [3, 4, 7–9] if H satisfies B(Z1,Z2) = g(Z1,Z2)H. The
submanifold N is totally geodesic if B ≡ 0 and minimal if H = 0, where H represents the mean
curvature vector described by H = 1

m trace(h). The covariant derivative of σ is computed by the
following relation:

(∇Z3B)(Z1,Z2) =∇⊥
Z3

B(Z1,Z2) − B(∇Z3Z1,Z2) − B(Z1,∇Z3Z2). (2.6)

The Gauss and Codazzi equations are characterized by the following relation:

R(Z1,Z2,Z3,Z4) =R(Z1,Z2,Z3,Z4) + g(B(Z1,Z3),B(Z2,Z4))
− g(B(Z1,Z4),B(Z2,Z3)), (2.7)

(R(Z1,Z2)Z3)⊥ =(∇Z1B)(Z2,Z3) − (∇Z2B)(Z1,Z3), (2.8)

for everyZ1,Z2,Z3,Z4 ∈ Γ(TN).

Definition 2.1. Let N be a Riemannian submanifold of a nearly Kähler manifold, Ñ2m. Then N is a
real submanifold if J(TN) ⊂ TN , and N is a complex submanifold if J(TN) ⊂ TN⊥.

Definition 2.2. A CR-submanifold of nearly Kähler manifold Ñ2m whose tangent bundle can be
decomposed as TN = D ⊕D⊥. Here, D represents a complex distribution, and D⊥ can be represented
as a real distribution. Moreover, if there is a Riemannian metric on N of the form g = gNT + f 2gN⊥ ,
then N is a CR-warped product of the form N = NT × f N⊥.

As we know, f represents a warping function for the warped product NT × f N⊥. For the general
warped product manifold N1 × f N2, we have the following useful formulas [4]

∇Z1Z2 =
Z1 f

f
Z2, (2.9)

R(Z2,Z3)Z1 =RN2(Z2,Z3)Z1 +

(
‖ f ‖2

f

){
g(Z2,Z1)Z3 − g(Z3,Z1)Z1

}
, (2.10)

where RN2 is the curvature tensor of fiber N2 and ∇ f is the gradient of f .

3. Main results

In this section, we prove that the compact CR-warped products on a minimal submanifold are
homeomorphic to a sphere. First, let us recall some fundamental theorems:

Theorem 3.1. [21] Let Nn be an oriented compact minimal n-dimensional submanifold of the unit
sphere Sn+p with n = 3. If ‖B‖2 < n, then Nn has finite fundamental groups.

Theorem 3.2. [21] Let Nn be an oriented compact minimal n-dimensional submanifold of the unit
sphere SN . Let f be an eigenfunction on Nn corresponding to a non-zero eigenvalue λ , then∫

N

(
λ + ‖B‖2 − n

)
‖d f ‖2dV ≥ 0, (3.1)

where dV represents the volume element on Nn. The equality holds if and only if either Nn is totally

geodesic, and λ is the first non-zero eigenvalue, or n = 2 and N = 2m, andN is isometric to S2
√

m(m+1)
2

and λ is the first non-zero eigenvalue.
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Theorem 3.3. [21] If v is a unit vector on the minimal n-dimensional submanifold Nn of the sphere
Sn+p, then the following inequality holds:

Ric(v, v) ≥
n − 1

n

(
n − ‖B‖2

)
, (3.2)

where Ric(v, v) is the Ricci curvature in the direction of v in Nn.

Theorem 3.4. [23] Let Nn be an oriented compact minimal n-dimensional submanifold of the unit
sphere Sn+p for n ≥ 2. If the following inequality is satisfied:

‖B‖2 ≤
n(3n − 2)

5n − 4
, (3.3)

then, Nn is either a totally geodesic submanifold or a Veronese surface in S4.

Similarly, we have the following result:

Theorem 3.5. [23] Let Nn be an oriented compact minimal n-dimensional submanifold of the unit
sphere Sn+p, and let n be odd. If the following inequality is satisfied:

‖B‖2 ≤
n(3n − 5)

5n − 9
, (3.4)

thenNn is either a totally geodesic submanifold or n = 3 and ‖B‖2 = 2 onN3, the second fundamental
form is given by:

(
B4

i j

)
=


1
√

2
0 0

0 − 1
√

2
0

0 0 0

 , (
B5

i j

)
=


0 1

√
2

0
1
√

2
0 0

0 0 0

 , (
B5

i j

)
= 0, α ≥ 6.

The following results are obtained for a CR-warped submanifold of a nearly Kaehler manifold.

Lemma 3.1. [29] Let N = NT × f N⊥ be a CR-warped product submanifold in a near Kaehler
manifold, then

g(B(Z1,Z2), JZ3) = −JZ1(ln f )g(Z2,Z3), (3.5)
g(B(Z1, JZ4), JZ2) = 0, (3.6)

for anyZ1,Z4 ∈ Γ(DT ) andZ2,Z3 ∈ Γ(D⊥).

Now, we prove the main result of this paper.

Theorem 3.6. LetN3 = N2
T× fN

1
⊥ be an oriented compact minimal 3-dimensional CR-warped product

submanifold in a nearly Kaehler S6 if the following inequality is satisfied:

‖∇ f ‖2 <
3 f 2

2
, (3.7)

then, N3 has finite fundamental groups.
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Proof. Assume that {u1, u2, u3} is an orthonormal frame of the CR-warped product submanifold N3 =

N2
T × f N

1
⊥ such that {u1, u2} is tangent to NT and {u3} is tangent to N⊥. Then we have

‖B‖2 = ‖B(DT ,DT )‖2 + ‖B(D⊥,D⊥)‖2 + 2‖B(D⊥,DT )‖2. (3.8)

The above equation can be expressed as

‖B‖2 =
∑

i, j

∑
α

g(B(ui, u j), Ju∗α)2 +
∑
α,β,γ

g(B(u∗α, u
∗
β), Ju∗γ)

2

+ 2
∑

i

∑
α,β

g(B(ui, u∗α), Ju∗β)
2, (3.9)

for i, j = 1, · · · n1 = dimNT and α, β = 1, · · · n2 = dimN⊥. As we assumed that n1 = 2 and n2 = 1,
then using Eqs (3.5) and (3.6), we derive the following:

‖B‖2 = 2‖∇ ln f ‖2 +
∑
α,β,γ

g(B(u∗i , u
∗
j), Ju∗α)2.

This is equivalent to the following:

‖B‖2 = 2‖∇ ln f ‖2 +
∑
α,β

g(B(u∗α, u
∗
β),B(u∗α, u

∗
β)). (3.10)

From (2.7), we have

g(R̃(x, y)x, y) = g(R(x, y)x, y) − g
(
B(y, y),B(x, x)

)
+ g

(
B(x, y),B(x, y)

)
. (3.11)

As we have chosen the ambient manifold as a six-dimensional near Kaehler S6, then from (2.2), we
have

g(R̃(x, y)x, y) = g(x, x)g(y, y) − g(x, y)2. (3.12)

Now combining (3.11), (3.12), and (2.10), we obtain

g
(
B(x, y),B(x, y)

)
=
‖∇ f ‖2

f 2 ‖x‖
2‖y‖2 − g(x, y)2 + g

(
B(y, y),B(x, x)

)
+ ‖x‖2‖y‖2 − g(x, y)2 − g(RNT (x, y)x, y). (3.13)

Inserting the above equation in (3.10), we arrive at

‖B‖2 =2‖∇ f ‖2 +
(
1 +
‖∇ f ‖2

f 2

)
(1 − 1) +

∑
α,β

g(B(u∗α, u
∗
α),B(u∗β, u

∗
β))

−
∑
α,β

g(RN⊥(u∗α, u
∗
β)u
∗
α, u

∗
β),

which implies that

‖B‖2 =2
‖∇ f ‖2

f 2 +
∑
α,β

g(B(u∗α, u
∗
α),B(u∗β, u

∗
β)) − 2τN⊥ .
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As the leaf is 1-dimensional, then τN⊥ = 0. Substituting these values into the above equations above,
one obtains:

‖B‖2 =
2‖∇ f ‖2

f 2 +
∑
α,β

g(B(u∗α, u
∗
α),B(u∗β, u

∗
β)). (3.14)

From (3.6), we easily obtain

g(B(JZ1, JZ4), JZ2) = 0. (3.15)

Since N is minimal, then we define the mean curvature as:

0 =
1
3

trace(B) =
1
3

2∑
i=1

B(ui, ui) + B(u∗3, u
∗
3)

=

2∑
i=1

g(B(ui, ui), Ju∗3)Ju∗3 +

2∑
i=1

g(B(Jui, Jui), Ju∗3)Ju∗3 + B(u∗3, u
∗
3).

From (3.6) and (3.15), we obtain

B(u∗3, u
∗
3) = 0. (3.16)

In conclusion, from (3.14) and (3.15), we have

‖B‖2 =
2‖∇ f ‖2

f 2 . (3.17)

If the inequity (3.7) is satisfied, then from the above inequality, we get ‖B‖2 < 3. Hence, the proof
is done using Theorem 3.1. �

We obtain another important result from the following:

Theorem 3.7. [26] Let Nn be an n-dimensional compact minimal submanifold of Sn+m, m ≥ 2. If
‖B‖2 ≤ 2n

3 everywhere inNn, thenNn is either a totally geodesic submanifold or a Veronese surface in
S2+m.

Using the above theorem, we prove the following:

Theorem 3.8. If N3 = N2
T × f N

1
⊥ is an oriented compact minimal 3-dimensional CR-warped product

submanifold in a nearly Kaehler S6, and if the following inequality is satisfied

‖∇ f ‖2 ≤ f 2, (3.18)

then N3 is either a totally geodesic submanifold or a Veronese surface in S5 for m = 3.

Proof. From (3.17) and (3.18), we obtain ‖B‖2 ≤ 2 for n = 3 as submanifold dimension and complex
dimension m = 3 for ambient manifold dimension. Now, applying Theorem 3.7, we obtain the desired
result. �
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One of the most important goals in Riemannian geometry is to find the bound of the Laplacian on
a particular manifold [2, 18, 19, 24, 37]. We can reach this purpose by studying the eigenvalues of the
Dirichlet boundary condition, which is denoted by υ1(Σ) > 0, on a complete noncompact Riemannian
manifold Nn with the compact domain Σ in Nn. In this respect, we have:

∆σ + υ1σ = 0, on Σ and σ = 0 on ∂Σ, (3.19)

where ∆ is the Laplacian on Nn and σ is a non-zero function defined on Nn. Then, υ1(Nn) can be
expressed as in f Συ1(Σ).

The Dirichlet eigenvalues are the eigenvalues of the Laplace operator on a domain with Dirichlet
boundary conditions. They have many important consequences in various areas of mathematics,
including differential geometry, number theory, and mathematical physics. For example, for the
Dirichlet eigenvalues, we can find the geometry of a domain. For example, the first Dirichlet
eigenvalue of a domain is related to the diameter of the domain. The higher eigenvalues are related to
the curvature of the domain and the way it is embedded in Euclidean space. In this sequel, the
Dirichlet eigenvalues appear in the solution of the heat equation on a domain. The eigenvalues and the
corresponding eigenfunctions determine the rate of decay of the solution. Assume that σ is the
non-constant warping function on the compact warped product submanifold Nn, then the minimum
principle on υ1 leads to (see, for instance, [5, 6])∫

Nn
||∇σ||2dV ≥ υ1

∫
Nn

(σ)2dV, (3.20)

and the equality is satisfied if and only if

∆σ = υ1σ. (3.21)

Based on the above classification, we obtain the following theorem:

Theorem 3.9. LetN3 = N2
T× fN

1
⊥ be an oriented compact minimal 3-dimensional CR-warped product

submanifold on a near Kaehler S6, and if the following inequality is satisfied

‖∇2σ‖2 + Ric(∇σ,∇σ) <
3υ1 f 2

2
, (3.22)

then N3 has finite fundamental groups.

Proof. Let us consider Eq (3.20). With σ = f , one obtains:∫
Nn
||∇ f ||2dV ≥ υ1

∫
Nn

( f )2dV, (3.23)

If f represents the first eigenfunction of the Laplacian, ∆ f = div(∇ f ) for Bn, connected to the first
non-zero eigenvalue υ1, such that ∆ f = −υ1 f , then recalling the Bochner formula (see [6]), this gives
us the following relation for the differentiable function f :

1
2

∆‖∇ f ‖2 = ‖∇2 f ‖2 + Ric(∇ f ,∇ f ) + g
(
∇ f ,∇(∆ f )

)
.
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By the integration of the previous equation, using the Stokes theorem, we have∫
NT×{1}

‖∇2 f ‖2dV +

∫
NT×{1}

Ric(∇ f ,∇ f )dV +

∫
NT×{1}

g
(
∇ f ,∇(∆ f )

)
dV = 0. (3.24)

Now, using ∆ f = −υ1 f and making some rearrangement in Eq (3.24), we derive∫
NT×{1}

‖∇ f ‖2dV =
1
υ1

( ∫
NT×{1}

‖∇2σ‖2dV +

∫
NT×{1}

Ric(∇σ,∇σ)dV
)
. (3.25)

Integrating with (3.22) and using the above equation, we arrive at∫
NT×{1}

‖∇ f ‖2dV <
1
υ1

∫
NT×{1}

(3υ1 f 2

2

)
dV =

∫
NT×{1}

(3 f 2

2

)
dV (3.26)

which implies that

‖∇ f ‖2 <
3 f 2

2
. (3.27)

Using Theorem 3.6, we get the desired proof. This completes the proof of the theorem. �

Using Theorem 3.2, we are ready to give the following result:

Theorem 3.10. Let N3 = N2
T × f N

1
⊥ be a closed minimal 3-dimensional CR-warped product

submanifold in a near Kaehler S6. Then, we have∫
N

(
υ1 +

2‖∇ f ‖2

f 2 − 3
)
‖d f ‖2dV ≥ 0, (3.28)

where dV is the volume element on Nn. Equality holds if and only if either N3 is totally geodesic and
υ1 is the first non-zero eigenvalue.

Proof. By replacing the value of ‖B‖2 from (3.17) to (3.1), we obtain the desired result. The second
part of Theorem 3.2 does not hold for us because n = 3. This completes the proof of the theorem. �

Using Theorem 3.3, we prove the following:

Theorem 3.11. Let N3 = N2
T × f N

1
⊥ be a minimal 3-dimensional CR-warped product submanifold in

a near Kaehler S6, we have

Ric(v, v) ≥
1
f 2

(
2 f 2 −

4
3
‖∇ f ‖2

)
, (3.29)

where Ric(v, v) is the Ricci curvature in the direction of v in N3.

Proof. By replacing the value of ‖B‖2 from (3.17) in (3.6), we get the proof of the theorem. �

The following result is based on Theorem 3.4:
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Theorem 3.12. Let N3 = N2
T × f N

1
⊥ be a compact minimal 3-dimensional CR-warped product

submanifold in a near Kaehler S6. If the following inequality is satisfied

‖∇ f ‖2 ≤
(21
22

)
f 2, (3.30)

then N3 is either a totally geodesic submanifold or a Veronese surface in S4.

Proof. For n = 3, we derive the inequality from (3.18), that is

‖B‖2 ≤
(21
11

)
. (3.31)

It means that Theorem 3.4 holds for n = 3. If the inequality (3.30) holds, then from (3.17), we
obtain the required inequality (3.31). �

Immediately, as a consequence of Theorem 3.5, we have:

Theorem 3.13. Let N3 = N2
T × f N

1
⊥ be a compact minimal 3-dimensional CR-warped product

submanifold in a near Kaehler S6 and 3 is an odd. If the following inequality is satisfied

‖∇ f ‖2 ≤ f 2, (3.32)

then N3 is either a totally geodesic submanifold or ‖∇ f ‖2 = f 2 on N3 and the second fundamental
form is given by

(
B4

i j

)
=


1
√

2
0 0

0 − 1
√

2
0

0 0 0

 , (
B5

i j

)
=


0 1

√
2

0
1
√

2
0 0

0 0 0

 , (
B5

i j

)
= 0, α ≥ 6.

4. Conclusions

The present paper discusses topological sphere types theorems for oriented compact minimal CR-
warped product submanifolds in a nearly Kaehler manifold. We show that if an inequality involving
the warping function and the scalar curvature of the fibers is satisfied, a compact minimal-dimensional
CR-warped product submanifolds in a nearly Kaehler manifold is homeomorphic to the sphere. In the
particular case, of a 6-dimensional unit sphere, we show that a 3-dimensional compact minimal CR-
warped product submanifold has finite fundamental groups homeomorphic to a sphere if 2‖∇ f ‖2 < 3 f 2,

is satisfied. By using Bonnet–Myers’s theorem, we give a result about the fundamental group and by
using Leung’s theorem, we obtain a result about the topological properties of a CR-warped submanifold
in the sense of [30, 39]
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