Research article Special Issues

An investment risk model with bilateral jumps

  • These authors contributed equally to this work
  • Received: 21 September 2023 Revised: 28 November 2023 Accepted: 11 December 2023 Published: 19 December 2023
  • MSC : 65C30, 91B05, 91G05

  • In this paper, an investment risk model with bilateral jumps was considered, assuming the insurer invested the surplus in two types of assets, namely, risk-free and risky ones, in a certain proportion. First, the integral-differential equations of the Gerber-Shiu function related to ruin and penalty were obtained, then, the sinc approximation method was used to obtain a numerical solution. Furthermore, we presented a special example for finding the explicit solutions (ES). By calculating the relative errors of the approximate solution (SA) and ES, we verified the superiority of the sinc method. Finally, several examples under different kinds of jumps were provided to show the impact of parameters such as investment ratio, discount factor or intensity of Poisson process on the ruin probability.

    Citation: Chunwei Wang, Jiaen Xu, Shujing Wang, Naidan Deng. An investment risk model with bilateral jumps[J]. AIMS Mathematics, 2024, 9(1): 2032-2050. doi: 10.3934/math.2024101

    Related Papers:

  • In this paper, an investment risk model with bilateral jumps was considered, assuming the insurer invested the surplus in two types of assets, namely, risk-free and risky ones, in a certain proportion. First, the integral-differential equations of the Gerber-Shiu function related to ruin and penalty were obtained, then, the sinc approximation method was used to obtain a numerical solution. Furthermore, we presented a special example for finding the explicit solutions (ES). By calculating the relative errors of the approximate solution (SA) and ES, we verified the superiority of the sinc method. Finally, several examples under different kinds of jumps were provided to show the impact of parameters such as investment ratio, discount factor or intensity of Poisson process on the ruin probability.



    加载中


    [1] H. Albrecher, E. C. Cheung, S. Thonhauser, Randomized observation periods for the compound Poisson risk model: The discounted penalty function, Scand. Actuar. J., 2013 (2013), 424–452. https://doi.org/10.1080/03461238.2011.624686 doi: 10.1080/03461238.2011.624686
    [2] H. Albrecher, E. C. Cheung, S. Thonhauser, Randomized observation periods for the compound Poisson risk model: Dividends, Astin Bull., 41 (2011), 645–672. https://doi.org/10.2143/AST.41.2.2136991 doi: 10.2143/AST.41.2.2136991
    [3] X. Chen, H. Ou, A compound Poisson risk model with proportional investment, J. Comput. Appl. Math., 242 (2013), 248–260. https://doi.org/10.1016/j.cam.2012.10.027 doi: 10.1016/j.cam.2012.10.027
    [4] H. U. Gerber, E. S. Shiu, On the time value of ruin, North Am. Actuar. J., 2 (1998), 48–72. https://doi.org/10.1080/10920277.1998.10595671 doi: 10.1080/10920277.1998.10595671
    [5] W. Zhuo, H. Yang, X. Chen, Time-consistent investment and reinsurance strategies for mean-variance insurers under stochastic interest rate and stochastic volatility, Mathematics, 8 (2020), 2183. https://doi.org/10.3390/math8122183 doi: 10.3390/math8122183
    [6] A. C. Ng, On a dual model with a dividend threshold, Insur. Math. Econ., 44 (2009), 315–324. https://doi.org/10.1016/j.insmatheco.2008.11.011 doi: 10.1016/j.insmatheco.2008.11.011
    [7] R. J. Boucherie, O. J. Boxma, K. Sigman, A note on negative customers, GI/G/1 workload, and risk processes, Insur. Math. Econ., 11 (1997), 305–311. https://doi.org/10.1017/S0269964800004848 doi: 10.1017/S0269964800004848
    [8] X. Xing, W. Zhang, Y. Jiang, On the time to ruin and the deficit at ruin in a risk model with double-sided jumps, Statist. Probab. Lett., 78 (2008), 82692–2699. https://doi.org/10.1016/j.spl.2008.03.034 doi: 10.1016/j.spl.2008.03.034
    [9] L. Zhang, The Erlang(n) risk model with two-sided jumps and a constant dividend barrier, Commun. Stat. Theory Methods, 50 (2021), 5899–5917. https://doi.org/10.1080/03610926.2020.1737712 doi: 10.1080/03610926.2020.1737712
    [10] Z. Zhang, H. Yang, A generalized penalty function in the Sparre-Andersen risk model with two-sided jumps, Statist. Probab. Lett., 80 (2010), 597–607. https://doi.org/10.1016/j.spl.2009.12.016 doi: 10.1016/j.spl.2009.12.016
    [11] Z. Zhang, H. Yang, S. Li, The perturbed compound Poisson risk model with two-sided jumps, J. Comput. Appl. Math., 233 (2010), 1773–1784. https://doi.org/10.1016/j.cam.2009.09.014 doi: 10.1016/j.cam.2009.09.014
    [12] H. Dong, Z. Liu, The ruin problem in a renewal risk model with two-sided jumps, Math. Comput. Model, 57 (2013), 800–811. https://doi.org/10.1016/j.mcm.2012.09.005 doi: 10.1016/j.mcm.2012.09.005
    [13] J. J. Rebello, K. Thampi, Some ruin theory components of two sided jump problems under renewal risk process, Int. Math. Forum, 12 (2017), 311–325. https://doi.org/10.12988/imf.2017.611147 doi: 10.12988/imf.2017.611147
    [14] E. M. Martín-González, A. Murillo-Salas, H. Pantí, Gerber-Shiu function for a class of Markov-modulated Lévy risk processes with two-sided jumps, Methodol. Comput. Appl. Probab., 24 (2022), 2779–2800. https://doi.org/10.1007/s11009-022-09954-1 doi: 10.1007/s11009-022-09954-1
    [15] Z. Palmowski, E. Vatamidou, Phase-type approximations perturbed by a heavy-tailed component for the Gerber-Shiu function of risk processes with two-sided jumps, Stoch. Models, 36 (2020), 337–363. https://doi.org/10.1080/15326349.2020.1717344 doi: 10.1080/15326349.2020.1717344
    [16] E. C. Cheung, H. Liu, G. E. Willmot, Joint moments of the total discounted gains and losses in the renewal risk model with two-sided jumps, Appl. Math. Comput., 331 (2018), 358–377. https://doi.org/10.1016/j.amc.2018.03.037 doi: 10.1016/j.amc.2018.03.037
    [17] J. Paulsen, Risk theory in a stochastic economic environment, Stoch. Process Their Appl., 46 (1993), 327–361. https://doi.org/10.1016/0304-4149(93)90010-2 doi: 10.1016/0304-4149(93)90010-2
    [18] K. C. Yuen, G. Wang, K. W. Ng, Ruin probabilities for a risk process with stochastic return on investments, Stoch. Process Their Appl., 110 (2004), 259–274. https://doi.org/10.1016/j.spa.2003.10.007 doi: 10.1016/j.spa.2003.10.007
    [19] K. C. Yuen, G. Wang, Some ruin problems for a risk process with stochastic interest, North Am. Actuar. J., 9 (2005), 129–142. https://doi.org/10.1080/10920277.2005.10596215 doi: 10.1080/10920277.2005.10596215
    [20] M. Elghribi, Stochastic calculus in a risk model with stochastic return on investments, Stochastics, 93 (2021), 110–129. https://doi.org/10.1080/17442508.2019.1708912 doi: 10.1080/17442508.2019.1708912
    [21] L. Bo, R. Song, D. Tang, Y. Wang, X. Yang, Lévy risk model with two-sided jumps and a barrier dividend strategy, Insur. Math. Econ., 50 (2012), 280–291. https://doi.org/10.1016/j.insmatheco.2011.12.002 doi: 10.1016/j.insmatheco.2011.12.002
    [22] N. Wan, Dividend payments with a threshold strategy in the compound Poisson risk model perturbed by diffusion, Insur. Math. Econ. 40 (2007), 509–523. https://doi.org/10.1016/j.insmatheco.2006.08.002 doi: 10.1016/j.insmatheco.2006.08.002
    [23] Y. Yang, J. Xie, Z. Zhang, Nonparametric estimation of some dividend problems in the perturbed compound Poisson model, Probab. Eng. Inform. Sci., 37 (2023), 418–441. https://doi.org/10.1017/s0269964822000298 doi: 10.1017/s0269964822000298
    [24] X. Chen, X. Xiao, X. Yang, A Markov-modulated jump-diffusion risk model with randomized observation periods and threshold dividend strategy, Insur. Math. Econ., 54 (2014), 76–83. https://doi.org/10.1016/j.insmatheco.2013.11.004 doi: 10.1016/j.insmatheco.2013.11.004
    [25] B. De Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, In: Transactions of the XVth international congress of Actuaries, 2 (1957), 433–443.
    [26] H. Albrecher, P. Azcue, N. Muler, Optimal dividend strategies for two collaborating insurance companies, Adv. Appl. Probab., 49 (2017), 515–548. https://doi.org/10.1017/apr.2017.11 doi: 10.1017/apr.2017.11
    [27] H. Albrecher, P. Azcue, N. Muler, Optimal ratcheting of dividends in insurance, SIAM J. Control Optim., 58 (2020), 1822–1845. https://doi.org/10.1137/19M1304878 doi: 10.1137/19M1304878
    [28] J. Xu, C. Wang, N. Deng, S. Wang, Numerical method for a risk model with two-sided jumps and proportional investment, Mathematics, 11 (2023), 1584. https://doi.org/10.3390/math11071584 doi: 10.3390/math11071584
    [29] F. Stenger, Numerical methods based on sinc and analytic functions, New York: Springer-Verlag, 1993. https://doi.org/10.1007/978-1-4612-2706-9
    [30] F. Stenger, Handbook of sinc numerical methods, Boca Raton: CRC Press, 2011. https://doi.org/10.1201/b10375
    [31] H. Zhi, J. Pu, On a dual risk model perturbed by diffusion with dividend threshold, Chinese Ann. Math. B, 37 (2016), 777–792. https://doi.org/10.1007/s11401-016-0975-3 doi: 10.1007/s11401-016-0975-3
    [32] L. Yang, J. Xie, G. Deng, A perturbed risk model with constant interest and periodic barrier dividend strategy, Commun. Stat. Simul. C., 50 (2021), 2467–2481. https://doi.org/10.1080/03610918.2019.1614620 doi: 10.1080/03610918.2019.1614620
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(784) PDF downloads(68) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog