Research article Special Issues

Mild explocivity, persistent homology and cryptocurrencies' bubbles: An empirical exercise

  • Received: 19 September 2023 Revised: 22 November 2023 Accepted: 24 November 2023 Published: 04 December 2023
  • MSC : 55, 62, 91

  • An empirical investigation was held regarding whether topological properties associated with point clouds formed by cryptocurrencies' prices could contain information on (locally) explosive dynamics of the processes involved. Those dynamics are associated with financial bubbles. The Phillips, Shi and Yu [33,34] (PSY) timestamping method as well as notions associated with the Topological Data Analysis (TDA) like persistent simplicial homology and landscapes were employed on a dataset consisting of the time series of daily closing prices of the Bitcoin, Ethereum, Ripple and Litecoin. The note provides some empirical evidence that TDA could be useful in detecting and timestamping financial bubbles. If robust, such an empirical conclusion opens some interesting paths of further research.

    Citation: Stelios Arvanitis, Michalis Detsis. Mild explocivity, persistent homology and cryptocurrencies' bubbles: An empirical exercise[J]. AIMS Mathematics, 2024, 9(1): 896-917. doi: 10.3934/math.2024045

    Related Papers:

  • An empirical investigation was held regarding whether topological properties associated with point clouds formed by cryptocurrencies' prices could contain information on (locally) explosive dynamics of the processes involved. Those dynamics are associated with financial bubbles. The Phillips, Shi and Yu [33,34] (PSY) timestamping method as well as notions associated with the Topological Data Analysis (TDA) like persistent simplicial homology and landscapes were employed on a dataset consisting of the time series of daily closing prices of the Bitcoin, Ethereum, Ripple and Litecoin. The note provides some empirical evidence that TDA could be useful in detecting and timestamping financial bubbles. If robust, such an empirical conclusion opens some interesting paths of further research.



    加载中


    [1] S. Anyfantaki, S. Arvanitis, N. Topaloglou, Diversification benefits in the cryptocurrency market under mild explosivity, Eur. J. Oper. Res., 295 (2021), 378–393. https://doi.org/10.1016/j.ejor.2021.02.058 doi: 10.1016/j.ejor.2021.02.058
    [2] D. Bazzanella, A. Gangemi, Bitcoin: A new proof-of-work system with reduced variance, Financ. Innov., 9 (2023), 91. https://doi.org/10.1186/s40854-023-00505-2 doi: 10.1186/s40854-023-00505-2
    [3] F. Blasques, P. Gorgi, S. J. Koopman, O. Wintenberger, Feasible invertibility conditions and maximum likelihood estimation for observation-driven models, Electron. J. Statist., 12 (2018), 1019–1052. http://dx.doi.org/10.1214/18-EJS1416 doi: 10.1214/18-EJS1416
    [4] G. Bonifazi, E. Corradini, D. Ursino, L. Virgili, A social network analysis based approach to investigate user behavior during a cryptocurrency speculative bubble, J. Inform. Sci., 49 (2023), 1060–1085.
    [5] E. Bouri, D. Roubaudb, S. J. H. Shahzad, Co-explosivity in the cryptocurrency market, Financ. Res. Lett., 29 (2019), 178–183. https://doi.org/10.1016/j.frl.2018.07.005 doi: 10.1016/j.frl.2018.07.005
    [6] E. Bouri, D. Roubaudb, S. J. H. Shahzadb, Do Bitcoin and other large cryptocurrencies jump together? Q. Rev. Econ. Financ., 76 (2020), 396–409. https://doi.org/10.1016/j.qref.2019.09.003 doi: 10.1016/j.qref.2019.09.003
    [7] F. Boussama, F. Fuchs, R. Stelzer, Stationarity and geometric ergodicity of BEKK multivariate GARCH models, Stoch. Proc. Appl., 121 (2011), 2331–2360. https://doi.org/10.1016/j.spa.2011.06.001 doi: 10.1016/j.spa.2011.06.001
    [8] P. Bubenik, Statistical topological data analysis for persistence landscapes, J. Mach. Learn. Res., 16 (2015), 77–102.
    [9] C. W. Cai, R. Xue, B. Zhou, Cryptocurrency puzzles: A comprehensive review and re-introduction, J. Account. Lit., 2023. https://doi.org/10.1108/JAL-02-2023-0023 doi: 10.1108/JAL-02-2023-0023
    [10] G. Carlsson, Topology and Data, B. Am. Math. Soc., 46 (2009), 255–308. https://doi.org/10.1090/S0273-0979-09-01249-X doi: 10.1090/S0273-0979-09-01249-X
    [11] G. Carlsson, Topological pattern recognition for point cloud data, Acta Numer., 23 (2014), 289–368. https://doi.org/10.1017/S0962492914000051 doi: 10.1017/S0962492914000051
    [12] G. Carlsson, A. Zomorodian, A. Collins, L. Guibas, Persistence barcodes for shapes, Int. Shape Model., 11 (2005), 149–188. https://doi.org/10.1145/1057432.1057449 doi: 10.1145/1057432.1057449
    [13] Y. Chen, I. Volic, Topological data analysis model for the spread of the coronavirus, PLoS One, 16 (2021). https://doi.org/10.1371/journal.pone.0255584 doi: 10.1371/journal.pone.0255584
    [14] M. S. R. Chowdhury, D. S. Damianov, Uncertainty and bubbles in cryptocurrencies: Evidence from newly developed uncertainty indices, Int. Rev. Financ. Anal., 91 (2024), 1029–1049. https://doi.org/10.1016/j.irfa.2023.102949 doi: 10.1016/j.irfa.2023.102949
    [15] T. Cover, J. Thomas, Elements of information theory, 2 Eds., Wiley, 2006.
    [16] B. T. Diba, H. I. Grossman, The theory of rational bubbles in stock prices, Econ. J., 98 (1988), 746–754. https://doi.org/10.2307/2233912 doi: 10.2307/2233912
    [17] F. C. Drost, T. E. Nijman, Temporal aggregation of GARCH processes, Econometric, 61 (1993), 909–927. https://doi.org/10.2307/2951767 doi: 10.2307/2951767
    [18] H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification, Discrete Comput. Geom., 28 (2002), 511–533. https://doi.org/10.1007/s00454-002-2885-2 doi: 10.1007/s00454-002-2885-2
    [19] F. A. Enoksen, C. J. Landsnes, K. Lucivjanska, P. Molnar, Understanding risk of bubbles in cryptocurrencies, J. Econ. Behav. Organ., 176 (2020), 129–144. https://doi.org/10.1016/j.jebo.2020.05.005 doi: 10.1016/j.jebo.2020.05.005
    [20] F. Fang, C. Ventre, M. Basios, L. Kanthan, D. Martinez-Rego, F. Wu, et al., Cryptocurrency trading: A comprehensive survey, Financ. Innov., 8 (2022), 13. https://doi.org/10.1186/s40854-021-00321-6 doi: 10.1186/s40854-021-00321-6
    [21] R. W. Ghrist, Elementary applied topology, Seattle: Createspace, 2014.
    [22] M. Gidea, Topology data analysis of critical transitions in financial networks, International Conference and School on Network Science, Berlin: Springer, 2017, 47–59. https://doi.org/10.48550/arXiv.1701.06081
    [23] M. Gidea, Y. Katz, Topological data analysis of financial time series: Landscapes of crashes, Physica A, 491 (2018), 820–834. https://doi.org/10.1016/j.physa.2017.09.028 doi: 10.1016/j.physa.2017.09.028
    [24] A. Hatcher, Algebraic topology, Cambridge University Press, 2001.
    [25] O. Haykir, I. Yagli, Speculative bubbles and herding in cryptocurrencies, Financ. Innov., 8 (2022), 78. https://doi.org/10.1186/s40854-022-00383-0 doi: 10.1186/s40854-022-00383-0
    [26] P. Katsiampa, S. Corbet, B. Lucey, Volatility spillover effects in leading cryptocurrencies: A BEKK-MGARCH analysis, Financ. Res. Lett., 29 (2019), 68–74. https://doi.org/10.1016/j.frl.2019.03.009 doi: 10.1016/j.frl.2019.03.009
    [27] J. Kukacka, L. Kristoufek, Fundamental and speculative components of the cryptocurrency pricing dynamics, Financ. Innov., 9 (2023), 61. https://doi.org/10.1186/s40854-023-00465-7 doi: 10.1186/s40854-023-00465-7
    [28] B. Lucey, S. Vigne, L. Yarovaya, Y. Wang, The cryptocurrency uncertainty index, Financ. Res. Lett., 45 (2022), 102147. https://doi.org/10.1016/j.frl.2021.102147 doi: 10.1016/j.frl.2021.102147
    [29] J. R. Munkres, Elements of algebraic topology, Boca Raton, Florida, USA: CRC Press, 2018.
    [30] M. Nicolau, A. J. Levine, G. Carlsson, Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, P. Natl. Acad. Sci. USA, 108 (2011), 7265–7270. https://doi.org/10.1073/pnas.1102826108 doi: 10.1073/pnas.1102826108
    [31] T. Owada, Limit theorems for Betti numbers of extreme sample clouds with application to persistence barcodes, Ann. Probab., 28 (2018), 2814–2854. https://doi.org/10.1214/17-AAP1375 doi: 10.1214/17-AAP1375
    [32] P. Phillips, T. Magdalinos, Limit theory for moderate deviations from a unit root, J. Econometrics, 136 (2007), 115–130. https://doi.org/10.1016/j.jeconom.2005.08.002 doi: 10.1016/j.jeconom.2005.08.002
    [33] P. Phillips, S. Shi, J. Yu, Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S & P 500, Int. Econ. Rev., 56 (2015), 1043–1078. https://doi.org/10.1111/iere.12132 doi: 10.1111/iere.12132
    [34] P. Phillips, S. Shi, J. Yu, Testing for multiple bubbles: Limit theory of real-time detectors, Int. Econ. Rev., 56 (2015), 1079–1134. https://doi.org/10.1111/iere.12131 doi: 10.1111/iere.12131
    [35] P. Phillips, Y. Wu, J. Yu, Explosive behavior in the 1990s Nasdaq: When did exuberance escalate asset values? Int. Econ. Rev., 52 (2011), 201–226. https://doi.org/10.1111/j.1468-2354.2010.00625.x doi: 10.1111/j.1468-2354.2010.00625.x
    [36] S. Rudkin, W. Rudkin, P. Dlotko, On the topology of cryptocurrency markets, Int. Rev. Financ. Anal., 89 (2023), 102759. https://doi.org/10.1016/j.irfa.2023.102759 doi: 10.1016/j.irfa.2023.102759
    [37] S. J. H. Shahzad, M. Anas, E. Bouri, Price explosiveness in cryptocurrencies and Elon Musk's tweets, Financ. Res. Lett., 47 (2022), 102695. https://doi.org/10.1016/j.frl.2022.102695 doi: 10.1016/j.frl.2022.102695
    [38] D. Straumann, Lecture notes in statistics: Estimation in conditionally heteroskedastic time series models, Berlin: Springer, 2005.
    [39] N. Tosunoglu, H. Abaci, G. Ates, N. S. Akkaya, Artificial neural network analysis of the day of the week anomaly in cryptocurrencies, Financ. Innov., 9 (2023), 88. https://doi.org/10.1186/s40854-023-00499-x doi: 10.1186/s40854-023-00499-x
    [40] F. Xu, E. Bouri, O. Cepni, Blockchain and crypto-exposed US companies and major cryptocurrencies: The role of jumps and co-jumps, Financ. Res. Lett., 50 (2022), 103201. https://doi.org/10.1016/j.frl.2022.103201 doi: 10.1016/j.frl.2022.103201
    [41] L. Zhang, E. Bouri, Y. Chen, Co-jump dynamicity in the cryptocurrency market: A network modelling perspective, Financ. Res. Lett., 58 (2023), 104372. https://doi.org/10.1016/j.frl.2023.104372 doi: 10.1016/j.frl.2023.104372
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(11199) PDF downloads(77) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog