Research article

Analytical solutions to the coupled fractional neutron diffusion equations with delayed neutrons system using Laplace transform method

  • Received: 27 February 2023 Revised: 14 April 2023 Accepted: 19 April 2023 Published: 07 June 2023
  • MSC : 35R11, 44A10, 82D75

  • The neutron diffusion equation (NDE) is one of the most important partial differential equations (PDEs), to describe the neutron behavior in nuclear reactors and many physical phenomena. In this paper, we reformulate this problem via Caputo fractional derivative with integer-order initial conditions, whose physical meanings, in this case, are very evident by describing the whole-time domain of physical processing. The main aim of this work is to present the analytical exact solutions to the fractional neutron diffusion equation (F-NDE) with one delayed neutrons group using the Laplace transform (LT) in the sense of the Caputo operator. Moreover, the poles and residues of this problem are discussed and determined. To show the accuracy, efficiency, and applicability of our proposed technique, some numerical comparisons and graphical results for neutron flux simulations are given and tested at different values of time $ t $ and order $ \alpha $ which includes the exact solutions (when $ \alpha = 1). $ Finally, Mathematica software (Version 12) was used in this work to calculate the numerical quantities.

    Citation: Aliaa Burqan, Mohammed Shqair, Ahmad El-Ajou, Sherif M. E. Ismaeel, Zeyad AlZhour. Analytical solutions to the coupled fractional neutron diffusion equations with delayed neutrons system using Laplace transform method[J]. AIMS Mathematics, 2023, 8(8): 19297-19312. doi: 10.3934/math.2023984

    Related Papers:

  • The neutron diffusion equation (NDE) is one of the most important partial differential equations (PDEs), to describe the neutron behavior in nuclear reactors and many physical phenomena. In this paper, we reformulate this problem via Caputo fractional derivative with integer-order initial conditions, whose physical meanings, in this case, are very evident by describing the whole-time domain of physical processing. The main aim of this work is to present the analytical exact solutions to the fractional neutron diffusion equation (F-NDE) with one delayed neutrons group using the Laplace transform (LT) in the sense of the Caputo operator. Moreover, the poles and residues of this problem are discussed and determined. To show the accuracy, efficiency, and applicability of our proposed technique, some numerical comparisons and graphical results for neutron flux simulations are given and tested at different values of time $ t $ and order $ \alpha $ which includes the exact solutions (when $ \alpha = 1). $ Finally, Mathematica software (Version 12) was used in this work to calculate the numerical quantities.



    加载中


    [1] K. Oldham, J. Spanier, The fractional calculus theory and applications of differentiation and integration to arbitrary order, New York: Academic Press, 1974.
    [2] K. S. Miller, B. Ross, An introduction to fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [3] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1998.
    [4] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [5] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, Singapore: World Scientific, 2022. https://doi.org/10.1142/p926
    [6] R. Almeida, D. Tavares, D. F. Torres, The variable-order fractional calculus of variations, Switzerland: Springer, 2019.
    [7] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real-world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [8] Z. Al-Zhour, Fundamental fractional exponential matrix: new computational formulae and electrical applications, AEU-Int. J. Electron. C., 129 (2021), 153557. https://doi.org/10.1016/j.aeue.2020.153557
    [9] J. F. G. Aguilar, Behavior characteristics of a cap-resistor, memcapacitor, and a memristor from the response obtained of RC and RL electrical circuits described by fractional differential equations, Turk. J. Electr. Eng. Co., 24 (2016), 1421–1433. https://doi.org/10.3906/elk-1312-49
    [10] J. F. Gomez-Aguilar, H. Yepez-Martinez, R. F. Escobar-Jimenez, C. M. Astorga-Zaragoza, J. Reyes-Reyes, Analytical and numerical solutions of electrical circuits described by fractional derivatives, Appl. Math. Model., 40 (2016), 9079–9094. https://doi.org/10.1016/j.apm.2016.05.041
    [11] R. R. Nigmatullin, D. Baleanu, Is it possible to derive Newtonian equations of motion with memory, Int. J. Theor. Phys., 49 (2010), 701–708. https://doi.org/10.1007/s10773-010-0249-x doi: 10.1007/s10773-010-0249-x
    [12] S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momani, Atangana-baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Soliton. Fract., 133 (2020), 109624. https://doi.org/10.1016/j.chaos.2020.109624 doi: 10.1016/j.chaos.2020.109624
    [13] R. L. Magin, Fractional calculus in bioengineering, Critical Reviews in Biomedical Engineering, 32 (2004), 1–104. https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10 doi: 10.1615/CritRevBiomedEng.v32.i1.10
    [14] M. A. Manna, V. Merle, Asymptotic dynamics of short waves in nonlinear dispersive models, Phys. Rev. E, 57 (1998), 6206. https://doi.org/10.1103/PhysRevE.57.6206 doi: 10.1103/PhysRevE.57.6206
    [15] A. El-Ajou, Z. Al-Zhour, A vector series solution for a class of hyperbolic system of Caputo-time-fractional partial differential equations with variable coefficients, Front. Phys., 9 (2021), 525250. https://doi.org/10.3389/fphy.2021.525250
    [16] A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, S. Kumar, S. Momani, Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative, Chaos, 29 (2019), 093102. https://doi.org/10.1063/1.5100234 doi: 10.1063/1.5100234
    [17] A. El-Ajou, N. O. Moa'ath, Z. Al-Zhour, S. Momani, A class of linear non-homogenous higher order matrix fractional differential equations: analytical solutions and new technique, Fract. Calc. Appl. Anal., 23 (2020), 356–377. https://doi.org/10.1515/fca-2020-0017 doi: 10.1515/fca-2020-0017
    [18] A. El-Ajou, N. O. Moa'ath, Z. Al-Zhour, S. Momani, Analytical numerical solutions of the fractional multi-pantograph system: two attractive methods and comparisons, Results Phys., 14 (2019), 102500. https://doi.org/10.1016/j.rinp.2019.102500 doi: 10.1016/j.rinp.2019.102500
    [19] N. O. Moa'ath, A. El-Ajou, Z. Al-Zhour, R. Alkhasawneh, H. Alrabaiah, Series solutions for nonlinear time fractional Schrodinger equations: comparisons between conformable and Caputo derivatives, Alex. Eng. J., 59 (2020), 2101–2114. https://doi.org/10.1016/j.aej.2020.01.023 doi: 10.1016/j.aej.2020.01.023
    [20] A. El-Ajou, Z. Al-Zhour, M. Oqielat, S. Momani, T. Hayat, Series solutions of nonlinear conformable fractional KdV-burgers equation with some applications, Eur. Phys. J. Plus, 134 (2019), 402. https://doi.org/10.1140/epjp/i2019-12731-x doi: 10.1140/epjp/i2019-12731-x
    [21] M. Shqair, A. El-Ajou, M. Nairat, Analytical solution for multi-energy groups of neutron diffusion equations by a residual power series method, Mathematics, 7 (2019), 633. https://doi.org/10.3390/math7070633 doi: 10.3390/math7070633
    [22] T. Eriqat, A. El-Ajou, N. O. Moa'ath, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Soliton. Fract., 138 (2020), 109957. https://doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957
    [23] A. El-Ajou, M. Al-Smadi, M Oqielat, S. Momani, S. Hadid, Smooth expansion to solve high-order linear conformable fractional PDEs Via residual power series method: applications to physical and engineering equations, Ain Shams Eng. J., 11 (2020), 1243–1254. https://doi.org/10.1016/j.asej.2020.03.016 doi: 10.1016/j.asej.2020.03.016
    [24] R. A. Fisher, The wave of advance of advantageous genes, Annals Eugenics, 7 (1937), 355–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x doi: 10.1111/j.1469-1809.1937.tb02153.x
    [25] M. Merdan, Solutions of time-fractional reaction-diffusion equation with modified Riemann-Liouville derivative, Int. J. Phys. Sci., 7 (2012), 2317–2326. https://doi.org/10.5897/IJPS12.027 doi: 10.5897/IJPS12.027
    [26] A. M. A. El-Sayed, S. Z. Rida, A. A. M. Arafa, On the solutions of the generalized reaction-diffusion model for bacterial colony, Acta Appl. Math., 110 (2010), 1501–1511. https://doi.org/10.1007/s10440-009-9523-4 doi: 10.1007/s10440-009-9523-4
    [27] W. M. Stacey, Nuclear reactor physics, Boston: John Wiley & Sons, 2001.
    [28] J. J. Duderstadt, L. J. Hamilton, Nuclear reactor analysis, Boston: John Wiley & Sons, 1976.
    [29] J. R. Lamarsh, Introduction to nuclear engineering, Boston: Addison-Wesley, 1983.
    [30] K. Khasawneh, S. Dababneh, Z. Odibat, A solution of the neutron diffusion equation in hemispherical symmetry using the homotopy perturbation method, Ann. Nucl. Energy, 36 (2009), 1711–1717. https://doi.org/10.1016/j.anucene.2009.09.001 doi: 10.1016/j.anucene.2009.09.001
    [31] S. Dababneh, K. Khasawneh, Z. Odibat, An alternative solution of the neutron diffusion equation in cylindrical symmetry, Ann. Nucl. Energy, 38 (2010), 1140–1143. https://doi.org/10.1016/j.anucene.2010.12.011 doi: 10.1016/j.anucene.2010.12.011
    [32] M. Shqair, E. Farrag, M. Al-Smadi, Solving multi-group reflected spherical reactor system of equations using the homotopy perturbation method, Mathematics, 10 (2022), 1784. https://doi.org/10.3390/math10101784
    [33] M. Shqair, Developing a new approaching technique of homotopy perturbation method to solve two-group reflected cylindrical reactor, Results Phys., 12 (2019), 1880–1887. https://doi.org/10.1016/j.rinp.2019.01.063 doi: 10.1016/j.rinp.2019.01.063
    [34] M. Nairat, M. Shqair, T. Alhalholy, Cylindrically symmetric fractional Helmholtz equation, Appl. Math. E-Notes, 19 (2019), 708–717.
    [35] M. Shqair, E. R. El-Zahar, Analytical solution of neutron diffusion equation in reflected reactors using modified differential transform method, In: Computational mathematics and applications, Singapore: Springer, 2020,129–145. https://doi.org/10.1007/978-981-15-8498-5_6
    [36] V. Vyawahare, P. S. V. Nataraj, Fractional-order modeling of nuclear reactor: from subdiffusive neutron transport to control-oriented models, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-10-7587-2
    [37] S. S. Ray, Fractional calculus with applications for nuclear reactor dynamics, Boca Raton: CRC Press, 2015. https://doi.org/10.1201/b18684
    [38] A. E. Aboanber, A. A. Nahla, S. M. Aljawazneh, Fractional two energy groups matrix representation for nuclear reactor dynamics with an external source, Ann. Nucl. Energy, 153 (2021), 108062. https://doi.org/10.1016/j.anucene.2020.108062 doi: 10.1016/j.anucene.2020.108062
    [39] T. Sardar, S. S. Ray, R. K. Bera, B. B. Biswas, S. Das, The solution of coupled fractional neutron diffusion equations with delayed neutrons, International Journal of Nuclear Energy Science and Technology, 5 (2010), 105–133. https://doi.org/10.1504/IJNEST.2010.030552 doi: 10.1504/IJNEST.2010.030552
    [40] S. M. Khaled, Exact solution of the one-dimensional neutron diffusion kinetic equation with one delayed precursor concentration in Cartesian geometry, AIMS Mathematics, 7 (2022), 12364–12373. https://doi.org/10.3934/math.2022686 doi: 10.3934/math.2022686
    [41] A. Burqan, A. El-Ajou, R. Saadeh, M. Al-Smadi, A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations. Alex. Eng. J., 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020
    [42] A. Qazza, A. Burqan, R. Saadeh, R. Khalil, Applications on double ARA-Sumudu transform in solving fractional partial differential equations, Symmetry, 14 (2022), 1817. https://doi.org/10.3390/sym14091817 doi: 10.3390/sym14091817
    [43] A. Burqan, R. Saadeh, A. Qazza, S. Momani, ARA-residual power series method for solving partial fractional differential equations, Alex. Eng. J., 62 (2023), 47–62. https://doi.org/10.1016/j.aej.2022.07.022 doi: 10.1016/j.aej.2022.07.022
    [44] A. Sarhan, A. Burqan, R. Saadeh, Z. Al-Zhour, Analytical solutions of the nonlinear time-fractional coupled Boussinesq-Burger equations using Laplace residual power series technique, Fractal Fract., 6 (2022), 631. https://doi.org/10.3390/fractalfract6110631
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1336) PDF downloads(75) Cited by(10)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog