Research article

Mutation of DNA and RNA sequences through the application of topological spaces

  • Received: 14 March 2023 Revised: 16 May 2023 Accepted: 19 May 2023 Published: 07 June 2023
  • MSC : 54A05, 54C10, 54D10

  • Topology is branch of modern mathematics that plays an important role in applications of biology. The aim of this paper is to study DNA sequence mutations using multisets, relations, metric functions, topology and association indices. Moreover, we use association indices to study the similarity between DNA sequences. These different ways of identifying a mutation help biologists to make a decision. A decision of mutation that depends on metrics between two sequences of genes and the topological structure produced by their relationship is presented.

    Citation: A. A. El-Atik, Y. Tashkandy, S. Jafari, A. A. Nasef, W. Emam, M. Badr. Mutation of DNA and RNA sequences through the application of topological spaces[J]. AIMS Mathematics, 2023, 8(8): 19275-19296. doi: 10.3934/math.2023983

    Related Papers:

  • Topology is branch of modern mathematics that plays an important role in applications of biology. The aim of this paper is to study DNA sequence mutations using multisets, relations, metric functions, topology and association indices. Moreover, we use association indices to study the similarity between DNA sequences. These different ways of identifying a mutation help biologists to make a decision. A decision of mutation that depends on metrics between two sequences of genes and the topological structure produced by their relationship is presented.



    加载中


    [1] C. C. Adamsand, D. F. Robert, Introduction to Topology: Pure and Applied, Homewood: Dorsey Press, 2008.
    [2] T. M. Al-Shami, Soft somewhat open sets: soft separation axioms and medical application to nutrition, Comp. Appl. Math., 41 (2011), 216. https://doi.org/10.1007/s40314-022-01919-x doi: 10.1007/s40314-022-01919-x
    [3] T. M. Al-Shami, Maximal rough neighborhoods with a medical application, J. Ambient Intell. Human. Comput., 2022. https://doi.org/10.1007/s12652-022-03858-1 doi: 10.1007/s12652-022-03858-1
    [4] T. M. Al-Shami, On soft separation axioms and their applications on decision-making problem, Math. Probl. Eng., 2021 (2021), 8876978. https://doi.org/10.1155/2021/8876978 doi: 10.1155/2021/8876978
    [5] I. L. Andrulis, H. Anton-Culver, J. Beck, B. Bove, J. Boyd, S. Buys, et al., Comparison of DNA‐ and RNA‐based methods for detection of truncating BRCA1 mutations, Hum. Mutat., 20 (2002), 65–73. https://doi.org/10.1002/humu.10097 doi: 10.1002/humu.10097
    [6] J. I. F. Bass, A. Diallo, J. Nelson, J. M. Soto, C. L. Myers, A. J. M. Walhout, Using networks to measure similarity between genes, association index selection, Nat. Methods, 10 (2013), 1169–1176. https://doi.org/10.1038/nmeth.2728 doi: 10.1038/nmeth.2728
    [7] W. D. Blizard, Multiset theory, Notre Dame J. Form. L., 30 (1989), 36–66.
    [8] K. Chakrabarty, R. Biswas, S. Nanda, Fuzzy shadows, Fuzzy Set. Syst., 101 (1999), 413–421. https://doi.org/10.1016/S0165-0114(97)00109-7 doi: 10.1016/S0165-0114(97)00109-7
    [9] K. Chakrabarty, R. Biswas, S. Nanda, On Yager's theory of bags and fuzzy bags, Comput. Informa., 18 (2012), 1–17.
    [10] R. Diestel, Graph Theory, New York: Springer, 2005.
    [11] A. A. El Atik, A. A. Nasef, Some topological structures of fractals and their related graphs, Filomat, 34 (2020), 153–165.
    [12] A. A. El Atik, H. Hassan, Some nano topological structures via ideals and graphs, J. Egypt. Math. Soc., 28 (2020), 41. https://doi.org/10.1186/s42787-020-00093-5 doi: 10.1186/s42787-020-00093-5
    [13] A. A. El Atik, A. S. Wahba, Topological approaches of graphs and their applications by neighborhood systems and rough sets, J. Intell. Fuzzy Syst., 39 (2020), 6979–6992.
    [14] A. A. El Atik, A. S. Wahba, M. Atef, Rough approximation models via graphs based on neighborhood systems, Granul. Comput., 6 (2021), 1025–1035. https://doi.org/10.1007/s41066-020-00245-z doi: 10.1007/s41066-020-00245-z
    [15] A. A. El Atik, A. W. Aboutahoun, A. Elsaid, Correct proof of the main result in "The number of spanning trees of a class of self-similar fractal models" by Ma and Yao, Inform. Process. Lett., 170 (2021), 106117. https://doi.org/10.1016/j.ipl.2021.106117 doi: 10.1016/j.ipl.2021.106117
    [16] M. K. El-Bably, A. A. El Atik, Soft $\beta$-rough sets and their application to determine COVID-$19$, Turk. J. Math., 45 (2021), 1133–1148. https://doi.org/10.3906/mat-2008-93 doi: 10.3906/mat-2008-93
    [17] M. M. El-Sharkasy, M. S. Badr, Modeling DNA and RNA mutation using mset and topology, Int. J. Biomath., 11 (2018), 18500584. https://doi.org/10.1142/S1793524518500584 doi: 10.1142/S1793524518500584
    [18] M. M. El-Sharkasy, M. Shokry, Separation axioms under crossover operator and its generalized, Int. J. Biomath., 9 (2016), 16500595. https://doi.org/10.1142/S1793524516500595 doi: 10.1142/S1793524516500595
    [19] M. M. El-Sharkasy, W. M. Fouda, M. S. Badr, Multiset topology via DNA and RNA mutation, Math. Method. Appl. Sci., 41 (2018), 5820–5832. https://doi.org/10.1002/mma.4764 doi: 10.1002/mma.4764
    [20] M. M. El-Sharkasy, Topological model for recombination of DNA and RNA, Int. J. Biomath., 11 (2018), 1850097. https://doi.org/10.1142/S1793524518500973 doi: 10.1142/S1793524518500973
    [21] D. N. Georgiou, T. E. Karakasidis, J. J. Nieto, A. Torres, A study of entropy/clarity of genetic sequences using metric spaces and fuzzy sets, J. Theor. Biol., 267 (2010), 95–105. https://doi.org/10.1016/j.jtbi.2010.08.010 doi: 10.1016/j.jtbi.2010.08.010
    [22] K. P. Girish, S. J. John, Relations and functions in multiset context, Inform. Sci., 179 (2009), 758–768. https://doi.org/10.1016/j.ins.2008.11.002 doi: 10.1016/j.ins.2008.11.002
    [23] K. Gostelow, Proper termination of flow-of-control in programs involving concurrent processes, Proc. ACM Annu. Conf., 1 (1972), 742–754.
    [24] S. P. Jena, S. K. Ghosh, B. K. Tripathy, On the theory of bags and lists, Inform. Sci., 132 (2001), 241–254. https://doi.org/10.1016/S0020-0255(01)00066-4 doi: 10.1016/S0020-0255(01)00066-4
    [25] H. Jiang, J. Zhan, D. Chen, Covering based variable precision $({\cal I}, {\cal T})$-fuzzy rough sets with applications to multi-attribute decision-making, IEEE T. Fuzzy Syst., 27 (2018), 1558–1572. https://doi.org/10.1109/TFUZZ.2018.2883023 doi: 10.1109/TFUZZ.2018.2883023
    [26] J. L. Kelley, General Topology, New York: Courier Dover Publications, 2017.
    [27] A. Khastan, L. Hooshyar, A computational method to analyze the similarity of biological sequences under uncertainty, Iran. J. Fuzzy Syst., 16 (2019), 33–41.
    [28] A. M. Kozae, A. El-Atik, A. Elrokh, M. Atef, New types of graphs induced by topological spaces, J. Intell. Fuzzy Syst., 36 (2019), 5125–5134. https://doi.org/10.3233/JIFS-171561 doi: 10.3233/JIFS-171561
    [29] D. E. Knuth, Son of seminumerical algorithms, ACM SIGSAM Bull., 9 (1981), 10–11. https://doi.org/10.1145/1088322.1088323 doi: 10.1145/1088322.1088323
    [30] A. R. Mashaghi, A. Ramezanpour, V. Karimipour, Investigation of a protein complex network, T Eur. Phys. J. B, 41 (2004), 113–121. https://doi.org/10.1140/epjb/e2004-00301-0 doi: 10.1140/epjb/e2004-00301-0
    [31] S. A. Morris, Topology without Tears, Biddeford: University of New England, 1989.
    [32] S. I. Nada, A. A. El-Atik, M. Atef, New types of topological structures via graphs, Math. Method. Appl. Sci., 41 (2018), 5801–5810. https://doi.org/10.1002/mma.4726 doi: 10.1002/mma.4726
    [33] A. S. Nawar, A. El-Atik, A model of a human heart via graph nano topological spaces, Int. J. Biomath., 12 (2019), 19500062. https://doi.org/10.1142/S1793524519500062 doi: 10.1142/S1793524519500062
    [34] J. J. Nieto, A. Torres, D. N. Georgiou, T. E. Karakasidis, Fuzzy polynucleotide spaces and metrics.Bull. Math. BioL., 68 (2006), 703–725. https://doi.org/10.1007/s11538-005-9020-5 doi: 10.1007/s11538-005-9020-5
    [35] T. N. Rivera, K. Banas, P. Bialk, K. M. Bloh, E. B. Kmiec, Insertional mutagenesis by CRISPR/Cas9 ribonucleoprotein gene editing in cells targeted for point mutation repair directed by short single-stranded DNA oligonucleotides, PloS One, 12 (2017). https://doi.org/10.1371/journal.pone.0169350 doi: 10.1371/journal.pone.0169350
    [36] J. J. Shu, A new integrated symmetrical table for genetic codes, Biosystems, 151 (2017), 21–26. https://doi.org/10.1016/j.biosystems.2016.11.004 doi: 10.1016/j.biosystems.2016.11.004
    [37] A. Syropoulos, Mathematics of multisets, In: Workshop on Membrane Computing, WMC 2000. Lecture Notes in Computer Science, 2235 (2000), 347–358.
    [38] S. Willard S, General Topology, New York: Dover Publications, 2004.
    [39] R. R. Yager, On the theory of bags, Int. J. Gen. Syst., 13 (1986), 23–37.
    [40] J. Zhan, B. Sun, J. C. R. Alcantud, Covering based multigranulation $({\cal I}, {\cal T})$-fuzzy rough set models and applications in multi attribute group decision-making, Inform. Sci., 476 (2029), 290–318.
    [41] K. Zhang, J. Zhan, W. Wu, J. C. R. Alcantud, Fuzzy $\beta$-covering based $({\cal I}, {\cal T})$-fuzzy rough set models and applications to multi-attribute decision-making, Comput. Ind. Eng., 128 (2019), 605–621.
    [42] L. Zhang, J. Zhan, Z. Xu, Covering-based generalized IF rough sets with applications to multi-attribute decision-making, Inform. Sci., 478 (2019), 275–302. https://doi.org/10.1016/j.ins.2018.11.033 doi: 10.1016/j.ins.2018.11.033
    [43] S. Łukaszyk, A new concept of probability metric and its applications in approximation of scattered data sets, Comput. Mech., 33 (2004), 299–304. https://doi.org/10.1007/s00466-003-0532-2 doi: 10.1007/s00466-003-0532-2
    [44] https://www.ncbi.nlm.nih.gov.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1248) PDF downloads(54) Cited by(3)

Article outline

Figures and Tables

Figures(9)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog