Research article

Common solutions to some extended system of fuzzy ordered variational inclusions and fixed point problems

  • Received: 22 November 2022 Revised: 08 April 2023 Accepted: 27 April 2023 Published: 25 May 2023
  • MSC : 47H09, 49J40

  • The main aim of this work is to use the XOR-operation technique to find the common solutions for a new class of extended system of fuzzy ordered variational inclusions with its corresponding system of fuzzy ordered resolvent equations involving the $ \oplus $ operation and fixed point problems, which are slightly different from corresponding problems considered in several recent papers in the literature and are more advantageous. We establish that the system of fuzzy ordered variational inclusions is equivalent to a fixed point problem and a relationship between a system of fuzzy ordered variational inclusions and a system of fuzzy ordered resolvent equations is shown. We prove the existence of a common solution and discuss the convergence of the sequence of iterates generated by the algorithm for a considered problem. The iterative algorithm and results demonstrated in this article have witnessed, a significant improvement for many previously known results of this domain. Some examples are constructed in support of the main results.

    Citation: Iqbal Ahmad, Mohd Sarfaraz, Syed Shakaib Irfan. Common solutions to some extended system of fuzzy ordered variational inclusions and fixed point problems[J]. AIMS Mathematics, 2023, 8(8): 18088-18110. doi: 10.3934/math.2023919

    Related Papers:

  • The main aim of this work is to use the XOR-operation technique to find the common solutions for a new class of extended system of fuzzy ordered variational inclusions with its corresponding system of fuzzy ordered resolvent equations involving the $ \oplus $ operation and fixed point problems, which are slightly different from corresponding problems considered in several recent papers in the literature and are more advantageous. We establish that the system of fuzzy ordered variational inclusions is equivalent to a fixed point problem and a relationship between a system of fuzzy ordered variational inclusions and a system of fuzzy ordered resolvent equations is shown. We prove the existence of a common solution and discuss the convergence of the sequence of iterates generated by the algorithm for a considered problem. The iterative algorithm and results demonstrated in this article have witnessed, a significant improvement for many previously known results of this domain. Some examples are constructed in support of the main results.



    加载中


    [1] H. Amann, On the number of solutions of nonlinear equations in ordered Banach spaces, J. Funct. Anal., 11 (1972), 346–384. https://doi.org/10.1016/0022-1236(72)90074-2 doi: 10.1016/0022-1236(72)90074-2
    [2] I. Ahmad, C. T. Pang, R. Ahmad, M. Ishtyak, System of Yosida inclusions involving XOR operator, J. Nonlinear Convex Anal., 18 (2017), 831–845.
    [3] I. Ahmad, M. Rahaman, R. Ahmad, I. Ali, Convergence analysis and stability of perturbed three-step iterative algorithm for generalized mixed ordered quasi-variational inclusion involving XOR operator, Optimization, 69 (2020), 821–845. https://doi.org/10.1080/02331934.2019.1652910 doi: 10.1080/02331934.2019.1652910
    [4] I. Ahmad, S. S. Irfan, M. Farid, P. Shukla, Nonlinear ordered variational inclusion problem involving XOR operation with fuzzy mappings, J. Inequal. Appl., 2020 (2020), 1–18. https://doi.org/10.1186/s13660-020-2308-z doi: 10.1186/s13660-020-2308-z
    [5] I. Ahmad, Three-step iterative algorithm with error terms of convergence and stability analysis for new NOMVIP in ordered Banach spaces, Stat. Optim. Inform. Comput., 10 (2022), 439–456. https://doi.org/10.19139/soic-2310-5070-990 doi: 10.19139/soic-2310-5070-990
    [6] J. P. Aubin, Optima and equilibria, 2 Eds., Berlin, Heidelberg: Springer, 1998.
    [7] B. D. Bella, An existence theorem for a class of inclusions, Appl. Math. Lett., 13 (2000), 15–19. https://doi.org/10.1016/S0893-9659(99)00179-2 doi: 10.1016/S0893-9659(99)00179-2
    [8] F. E. Browder, Nonlinear variational inequalities and maximal monotone mapinggs in Banach spaces, Math. Ann., 183 (1969), 213–231. https://doi.org/10.1007/BF01351381 doi: 10.1007/BF01351381
    [9] S. S. Chang, Y. G. Zhu, On variational inequalities for fuzzy mappings, Fuzzy Sets Syst., 32 (1989), 359–367. https://doi.org/10.1016/0165-0114(89)90268-6 doi: 10.1016/0165-0114(89)90268-6
    [10] L. C. Ceng, A subgradient-extragradient method for bilevel equilibrium problems with the constraints of variational inclusion systems and fixed point problems, Commun. Optim. Theory, 2021 (2021), 1–16.
    [11] S. Defermos, Trafic equilibrium and variational inequalities, Transport. Sci., 14 (1980), 42–54. https://doi.org/10.1287/trsc.14.1.42 doi: 10.1287/trsc.14.1.42
    [12] X. P. Ding, Perturbed proximal point algorithms for generalized quasi variational inclusions, J. Math. Anal. Appl., 210 (1997), 88–101. https://doi.org/10.1006/jmaa.1997.5370 doi: 10.1006/jmaa.1997.5370
    [13] A. Dixit, D. R. Sahu, P. Gautam, T. Som, J. C. Yao, An accelerated forward-backward splitting algorithm for solving inclusion problems with applications to regression and link prediction problems, J. Nonlinear Var. Anal., 5 (2021), 79–101. https://doi.org/10.23952/jnva.5.2021.1.06 doi: 10.23952/jnva.5.2021.1.06
    [14] Y. H. Du, Fixed points of increasing operators in ordered Banach spaces and applications, Appl. Anal., 38 (1990), 1–20. https://doi.org/10.1080/00036819008839957 doi: 10.1080/00036819008839957
    [15] G. Fichera, Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia, 7 (1963–1964), 91–140.
    [16] A. Hassouni, A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 185 (1994), 706–712. https://doi.org/10.1006/jmaa.1994.1277 doi: 10.1006/jmaa.1994.1277
    [17] C. F. Hu, Solving variational inequalities in a fuzzy environment, J. Math. Anal. Appl., 249 (2000), 527–538. https://doi.org/10.1006/jmaa.2000.6905 doi: 10.1006/jmaa.2000.6905
    [18] J. S. Jung, A general iterative algorithm for split variational inclusion problems and fixed point problems of a pseudocontractive mapping, J. Nonlinear Funct. Anal., 2022 (2022), 1–19. https://doi.org/10.23952/jnfa.2022.13 doi: 10.23952/jnfa.2022.13
    [19] H. G. Li, Approximation solution for generalized nonlinear ordered variatinal inequality and ordered equation in ordered Banach space, Nonlinear Anal. Forum, 13 (2008), 205–214.
    [20] H. G. Li, A nonlinear inclusion problem involving $(\alpha, \lambda)$-NODM set-valued mappings in ordered Hilbert space, Appl. Math. Lett., 25 (2012), 1384–1388. https://doi.org/10.1016/j.aml.2011.12.007 doi: 10.1016/j.aml.2011.12.007
    [21] H. G. Li, D. Qiu, Y. Zou, Characterizations of weak-ANODD set-valued mappings with applications to an approximate solution of GNMOQV inclusions involving $\oplus$ operator in ordered Banach spaces, Fixed Point Theory Appl., 2013 (2013), 1–12. https://doi.org/10.1186/1687-1812-2013-241 doi: 10.1186/1687-1812-2013-241
    [22] M. A. Noor, Variational inequalities for fuzzy mappings (III), Fuzzy Sets Syst., 110 (2000), 101–108. https://doi.org/10.1016/S0165-0114(98)00131-6 doi: 10.1016/S0165-0114(98)00131-6
    [23] M. A. Noor, Three-step iterative algorithms for multivaled quasi variational inclusions, J. Math. Anal. Appl., 255 (2001), 589–604. https://doi.org/10.1006/jmaa.2000.7298 doi: 10.1006/jmaa.2000.7298
    [24] J. Y. Park, J. U. Jeong, A perturbed algorithm of variational inclusions for fuzzy mappings, Fuzzy Sets Syst., 115 (2000), 419–424. https://doi.org/10.1016/S0165-0114(99)00116-5 doi: 10.1016/S0165-0114(99)00116-5
    [25] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877–898. https://doi.org/10.1137/0314056 doi: 10.1137/0314056
    [26] H. H. Schaefer, Banach lattices and positive operators, Berlin, Heidelberg: Springer, 1974. https://doi.org/10.1007/978-3-642-65970-6
    [27] M. J. Smith, The existence, uniqueness and stability of trafic equilibria, Transport. Res. B Meth., 13 (1979), 295–304. https://doi.org/10.1016/0191-2615(79)90022-5 doi: 10.1016/0191-2615(79)90022-5
    [28] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413–4416.
    [29] F. H. Wang, A new iterative method for the split common fixed point problem in Hilbert spaces, Optimization, 66 (2017), 407–415. https://doi.org/10.1080/02331934.2016.1274991 doi: 10.1080/02331934.2016.1274991
    [30] Y. Q. Wang, X. L. Fang, J. L. Guan, T. H. Kim, On split null point and common fixed point problems for multivalued demicontractive mappings, Optimization, 70 (2021), 1121–1140. https://doi.org/10.1080/02331934.2020.1764952 doi: 10.1080/02331934.2020.1764952
    [31] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [32] L. J. Zhu, Y. H. Yao, Algorithms for approximating solutions of split variational inclusion and fixed-point problems, Mathematics, 11 (2023), 1–12. https://doi.org/10.3390/math11030641 doi: 10.3390/math11030641
    [33] H. J. Zimmerann, Fuzzy set theory–and its applications, Dordrecht: Springer, 2001. https://doi.org/10.1007/978-94-010-0646-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1178) PDF downloads(70) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog