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Abstract: The main aim of this work is to use the XOR-operation technique to find the common
solutions for a new class of extended system of fuzzy ordered variational inclusions with its
corresponding system of fuzzy ordered resolvent equations involving the ⊕ operation and fixed point
problems, which are slightly different from corresponding problems considered in several recent papers
in the literature and are more advantageous. We establish that the system of fuzzy ordered variational
inclusions is equivalent to a fixed point problem and a relationship between a system of fuzzy ordered
variational inclusions and a system of fuzzy ordered resolvent equations is shown. We prove the
existence of a common solution and discuss the convergence of the sequence of iterates generated by
the algorithm for a considered problem. The iterative algorithm and results demonstrated in this article
have witnessed, a significant improvement for many previously known results of this domain. Some
examples are constructed in support of the main results.

Keywords: algorithm; fuzzy inference; iterative methods; nonlinear system; resolvent operator;
sequence analysis
Mathematics Subject Classification: 47H09, 49J40

1. Introduction

The variational inclusion problem propelled by Hassouni and Moudafi [16] is a general version of
the variational inequality problem introduced by Stampacchia [28] and Fichera [15] in the past decade.
As per use of the variational inequalities and inclusions problems, these will help us solve and design
various schemes to solve problems that arose in pure and applied sciences (i.e., network equilibrium,
traffic network problems, economics, and many more) [10, 11, 13, 24–27, 33].
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On the other hand, Zadeh [31] came up with a very interesting and fascinating object called fuzzy
sets; as the theory for fuzzy sets evolved, it has extensively been utilized in different disciplines of
mathematical research, as well as other areas of pure and applied sciences. The emergence of fuzzy
sets were due to a small, notable, and powerful extension as an addition of an interval [0, 1] instead of
a set {0, 1} to the co-domain of the characteristic function as χ : C ⊂ H → [0, 1]. After this powerful
characterization, this concept will enter into a new zone and the discussion of crisp and fuzzy sets
came into existence. It also fulfills the gaps between computer science and mathematics, and even
many more subjects too.

Variational inequalities for fuzzy mappings were first introduced and studied by Chang and
Zhu [9] in 1989. Following this, many authors have gone through the sandwich concept of
variational inequalities and fuzzy mappings for their matter of interest for deep and well mannered
details [7, 8, 12, 17, 18, 22, 23].

Another problem, known as the fixed point problem, plays an essential role in the theory of nonlinear
analysis, algorithmic development, optimization, and applications across all the discipline of pure and
applied sciences, and many more [10,14,29,30,32]. Therefore, the fixed point problem is the problem
of obtaining p ∈ H such that S (p) = p, where S is a nonlinear mapping on H . In this paper, we use
Fix(S ) to denote the fixed point set of S , that is, Fix(S ) = {p ∈ H : S (p) = p}.

The idea of calculating the number of fixed points in an ordered Banach space was propelled by
Amman [1]. Then, people working on variational inclusion and inequalities problems in ordered
spaces jumped into the lead and various ways of computing the fixed points/solution of variational
inclusion/inequalities problems in the light of ordered Hilbert/Banach spaces. Li and his team has
grab the title to first work on ordered resolvent equations and their corresponding ordered variational
inequalities/inclusion problems [19–21]. They created a nice line of work regarding the mixture of
ordered variational inequalities/inclusion problems involving the concept of operators (e.g., XOR,
XNOR, OR and AND).

Motivated by the research of this inclination, Ahmad and his team enrich the work of Li and
his team and improvise the structure of resolvent equations corresponding with their variational
inequalities/inclusion problems in a broader settings involving XOR, XNOR operator, etc. [2–5].

The whole draft is divided into multiple segments: The first segment is a well equipped collection
of basic preliminaries; the second segment is devoted to the formulation of the system of fuzzy
ordered variational inclusions with its corresponding system of fuzzy ordered resolvent equations
involving ⊕ operation and fixed point problems, and discusses the existence of common solution
results; a subsegment is also devoted to iterative schemes and a convergence result for the system
of fuzzy ordered variational inclusions with its corresponding system of resolvent equations involving
⊕ operation and fixed point problems and the last segment is devoted to the conclusion in which the
future scope of the problem is discussed and a comprehensive record of references is there.

2. Preliminaries

Throughout the manuscript, we assume thatH is an ordered Banach space endowed with a norm ∥·∥
and an inner product ⟨·, ·⟩. Let 2H (respectively, CB(H)) be the family of all non-void (respectively,
non-empty closed and bounded) subsets ofH .

Let F (H) be a collection of all fuzzy sets defined over H . A map F : H → F (H) is said to be
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fuzzy mapping onH . For each p ∈ H , F(p) (in the sequel, it will be denoted by Fp) is a fuzzy set on
H and Fp(q) is the membership degree of q in Fp.

A fuzzy mapping F : H → F (H) is said to be closed if for each p ∈ H , the function q→ Fp(q) is
upper semi-continuous, that is, for any given net {qα} ⊂ H , satisfying qα → q0 ∈ H , we have

lim
α

sup Fp(qα) ≤ Fp(q0).

For R ∈ F (H) and λ ∈ [0, 1], the set (R)λ = {p ∈ H : R(p) ≥ λ} is called a λ-cut set of R. Let
F : H → F (H) be a closed fuzzy mapping satisfying the following condition:

(∗) If there exists a function a : H → [0, 1] such that for each p ∈ H , the set (Fp)a(p) = {q ∈ H :
Fp(q) ≥ a(p)} is a nonempty bounded subset ofH .

If F is a closed fuzzy mapping satisfying the condition (∗), then for each p ∈ H , (Fp)a(p) ∈ CB(H). In
fact, let {qα} ⊂ (Fp)a(p) be a net and qα → q0 ∈ H , then (Fp)a(p) ≥ a(p), for each α. Since F is a closed,
we have

Fq(q0) ≥ lim
α

sup Fp(qα) ≥ a(p),

which implies that q0 ∈ (Fp)a(p) and so (Fp)a(p) ∈ CB(H).
For the presentation of the results, let us demonstrate some known definitions and results.

Definition 2.1. [14, 19] A nonempty subset C of H is called a normal cone if there exists a constant
ν > 0 such that for 0 ≤ p ≤ q, we have ||p|| ≤ ν||q||, for any p, q ∈ H .
Definition 2.2. [8] Let G : H → H be a single-valued mapping. Then,

(i) G is said to be β-ordered compression mapping, if G is a comparison mapping and

G(p) ⊕ G(q) ≤ β(p ⊕ q), for 0 < β < 1.

(ii) G is said to be ϑ-order non-extended mapping, if there exists a constant ϑ > 0 such that

ϑ(p ⊕ q) ≤ G(p) ⊕ G(q), for all p, q ∈ H .

Definition 2.3. [21] A mapping N : H ×H → H is said to be (κ, ν)-ordered Lipschitz continuous, if
p ∝ q, u ∝ v, then N(p, u) ∝ N(q, v) and there exist constants κ, ν > 0 such that

N(p, u) ⊕ N(q, v) ≤ κ(p ⊕ q) + ν(u ⊕ v), for all p, q, u, v ∈ H .

Definition 2.4. [19] A compression mapping h : H → H is said to be restricted accretive mapping if
there exist two constants ξ1, ξ2 ∈ (0, 1] such that for any a, z ∈ H ,(

h(p) + I(p)
)
⊕

(
h(q) + I(q)

)
≤ ξ1

(
h(p) ⊕ h(q)

)
+ ξ2(p ⊕ q)

holds, where I is the identity mapping onH .
Definition 2.5. [4, 20] A set-valued mapping A : H → CB(H) is said to be D-Lipschitz continuous, if
for any p, q ∈ H , p ∝ q, there exists a constant δDA > 0 such that

D(A(p), A(q)) ≤ δDA(p ⊕ q), for all p, q, u, v ∈ H .
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Definition 2.6. [4] Let G : H → H be a strong comparison and ϑ-order non-extended mapping. Then,
a comparison mapping B : H → 2H is said to be an ordered (α, λ)-XOR-weak-ANODD set-valued
mapping if B is α-weak-non-ordinary difference mapping and λ-XOR-ordered strongly monotone
mapping, and [G ⊕ λB](H) = H , for λ, β, α > 0.
Definition 2.7. [4] Let G : H → H be a strong comparison and ϑ-order non-extended mapping. Let
B : H → 2H be an ordered (α, λ)-XOR-weak-ANODD set-valued mapping. The resolvent operator
Jλ
B

: H → H associated with B is defined by

Jλ
B(p) = [G ⊕ λB]−1(p),∀p ∈ H , (2.1)

where λ > 0 is a constant.
Lemma 2.1. [4,20,21] Let ⊙ be an XNOR operation and ⊕ be an XOR operation. Then, the following
relations hold:

(i) p ⊙ p = p ⊕ p = 0, p ⊙ q = q ⊙ p = −(p ⊕ q) = −(q ⊕ p);
(ii) (λp) ⊕ (λq) = |λ|(p ⊕ q);

(iii) 0 ≤ p ⊕ q, if p ∝ q;
(iv) (p + q) ⊙ (u + v) ≥ (p ⊙ u) + (q ⊙ v);
(v) If p, q and w are comparative to each other, then (p ⊕ q) ≤ p ⊕ w + w ⊕ q;

(vi) (αp) ⊕ (βp) = |α − β|p = (α ⊕ β)p, if p ∝ 0,
(vii) ∥p ⊕ q∥ ≤ ∥p − q∥ ≤ ν∥p ⊕ q∥;

(viii) If p ∝ q, then ∥p ⊕ q∥ = ∥p − q∥, for all p, q, u, v,w ∈ H and α, β, λ ∈ R.

Lemma 2.2. Let G : H → H be a strong comparison and ϑ-order non-extended mapping. Let
B : H → 2H be an ordered (α, λ)-XOR-weak ANODD set-valued mapping with respect to Jλ

B
, for

αλ > 1. Then, the resolvent operator Jλ
B

satisfying the following condition:

Jλ
B(p) ⊕ Jλ

B(q) ≤
1

ϑ(αλ ⊕ 1)
(p ⊕ q), ∀p, q ∈ Hp,

i.e., the resolvent operator Jλ
B

is 1
ϑ(αλ⊕1) -nonexpansive mapping.

Lemma 2.3. [4] Let G : H → H be a strong comparison and ϑ-order non-extended mapping. Let
B : H × H → 2H be an ordered (α, λ)-XOR-weak ANODD set-valued mapping with respect to the
first argument. The resolvent operator Jλ

B
: H → H associated with B is defined by

Jλ
B(.,z)(p) = [G ⊕ λB(., z)]−1(p), for z ∈ H . (2.2)

Then, for any given z ∈ H , the resolvent operator Jλ
B(.,z) : H → H is well-defined, single valued,

continuous, comparison and 1
ϑ(αλ⊕1) -nonexpansive mapping with λα > 1, that is

Jλ
B(.,z)(p) ⊕ Jλ

B(.,z)(q) ≤
1

ϑ(αλ ⊕ 1)
(p ⊕ q), for all p, q ∈ H . (2.3)

3. Problem and fixed point formulation

For each i ∈ Λ = {1, 2, 3, · · · ,m}, let Hi be an ordered Banach space equipped with the norm ∥.∥i
and Ki be a normal cone with normal constant νi, and let hi,Gi : Hi → Hi and Ni :

m∏
j=1
H j → Hi
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be the ordered single-valued comparison mappings, respectively. Let S i,Ui,Vi : Hi → Fi(Hi) be
closed fuzzy mappings satisfying the following condition (∗), with functions di, ci, ei : Hi → [0, 1]
such that for each pi ∈ Hi, we have (S i,pi)di(pi), (Ui,pi)ci(pi), and (Vi,pi)ei(pi) in CB(Hi), respectively. Let
Bi : Hi × Hi → 2Hi be the set-valued mapping. We consider the following extended nonlinear system
of fuzzy ordered variational inclusions involving the ⊕ operation and the solution set is denoted by
ENSFOVI(Ni,Gi,Bi, hi, i = 1, 2, · · · ,m):

For each i ∈ Λ and some ωi > 0, find (p1, p2, · · · , pm) ∈
m∏

i=1
Hi such that S i,pi(pi) ≥ di(pi),Ui,pi(pi) ≥

ci(pi) and Vi,pi(pi) ≥ ei(pi), i.e., qi ∈ (S i,pi)di(pi), ui ∈ (Ui,pi)ci(pi) and vi ∈ (Vi,pi)ei(pi),

0 ∈ N1(q1, q2, · · · , qm) ⊕ G1(u1) + ω1B1(h1(p1), v1),
0 ∈ N2(q1, q2, · · · , qm) ⊕ G2(u2) + ω2B2(h2(p2), v2),
0 ∈ N3(q1, q2, · · · , qm) ⊕ G3(u3) + ω3B3(h3(p3), v3),

.

.

.

0 ∈ Nm(q1, q2, · · · , qm) ⊕ Gm(um) + ωmBm(hm(pm), vm).

(3.1)

Equivalently, for each i ∈ Λ,

0 ∈ Ni(q1, q2, · · · , qm) ⊕ Gi(ui) + ωiBi(hi(pi), vi). (3.2)

Some special cases of problem (3.2) are as follows:

(i) For i = 1, if N1(q1, q2, · · · , qm) = N1(q1, q2) and ω1 = 1, then problem (3.2) reduces to the
problem of finding p1, q1, q2, u1, z1 ∈ H1 such that

0 ∈ N1(q1, q2) ⊕ G1(u1) + B1(h1(p1), v1). (3.3)

Problem (3.3) was considered and studied by Ahmad et al. [4].
(ii) For i = 1, if S 1,U1,V1 = I (identity mapping), B1 = −1, N1 is single-valued mapping and
N1(p1, p2, · · · , pm) = N1(p1), then problem (3.2) reduces to the problem of finding p1 ∈ H1 such
that

ω1 ∈ N1(p1) ⊕ G1(p1). (3.4)

Problem (3.4) was considered and studied by Li et al. [21].

By taking suitable choices of the mappings hi, Ni, Bi, S i, Ui, Vi and the spaceHi, for each i ∈ Λ,
in above problem (3.1), one can easily obtain the problems considered and studied in [1–4,19–21] and
references therein.

For each i ∈ Λ = {1, 2, 3, · · · ,m}, putting di(pi) = ci(pi) = ei(pi) = 1, for all pi ∈ Hi, problem (3.1)
includes many kinds of variational inequalities and variational inclusion problems [7, 9, 17, 22–24].

In support of our problem (3.2), we provide the following example.
Example 3.1. For each i ∈ Λ = {1, 2, 3, · · · ,m}, let Hi = [0, 11i] and C={pi ∈ Hi : 0 ≤ pi ≤ 5i}
be the normal cone. Let S i,Ui,Vi : Hi → Fi(Hi) be the closed fuzzy mappings and the mappings
di, ci, ei : Hi → [0, 1] defined by for all pi, qi, ui, vi ∈ Hi.

S i,pi(qi) =

 1
3i+|qi−2i| , if pi ∈ [0, 1],

1
3i+pi |qi−2i| , if pi ∈ (1, 11i],

Ui,pi(ui) =

 1
2i2+(ui−i)2 , if pi ∈ [0, 1],

1
2i+pi(ui−i)2 , if pi ∈ (1, 11i],
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Vi,p(vi) =

 1
i+pi |vi−3i| , if pi ∈ [0, 1],

1
2i+|vi−3i| , if pi ∈ (1, 11i],

di(pi) =

 1
5i , if pi ∈ [0, 1],

1
3i+2ipi

, if pi ∈ (1, 11i],

ci(pi) =

 1
3i2 , if pi ∈ [0, 1],

1
i(2+ipi)

, if pi ∈ (1, 11i],
and ei(pi) =

 1
i+3ipi

, if pi ∈ [0, 1],
1
5i , if pi ∈ (1, 11i].

For any pi ∈ [0, 1], we have

(S i,pi)di(pi) =
{
qi : S i,pi(qi) ≥

1
5

}
=

{
{qi :

1
3i + |qi − 2i|

≥
1
5i

}
= [0, 4i],

(Ui,pi)ci(pi) =
{
ui : Ui,pi(ui) ≥

1
3i2

}
=

{
ui :

1
2i2 + (ui − i)2 ≥

1
3i2

}
= [0, 2i],

(Vi,pi)ei(pi) =
{
vi : Vi,pi(vi) ≥

1
i + 3ipi

}
=

{
vi :

1
i + pi|vi − 3i|

≥
1

i + 3ipi

}
= [0, 6i],

and for any pi ∈ (1, 11i], we have

(S i,pi)di(pi) =
{
qi : S i,pi(qi) ≥

1
3i + 2ipi

}
=

{
{qi :

1
3i + pi|qi − 2i|

≥
1

3i + 2ipi

}
= [0, 4i],

(Ui,pi)ci(pi) =
{
ui : Ui,pi(ui) ≥

1
i(2 + ipi)

}
=

{
ui :

1
2i + pi(ui − i)2 ≥

1
i(2 + ipi)

}
= [0, 2i],

(Vi,pi)ei(pi) =
{
vi : Vi,pi(vi) ≥

1
5i

}
=

{
vi :

1
2i + |vi − 3i|

≥
1
5i

}
= [0, 6i].

Now, we define the single-valued mappings hi,Gi : Hi → Hi and Ni :
m∏

j=1
H j → Hi by

hi(pi) =
pi

5
, Gi(ui) =

ui

7
and Ni(q1, q2, · · · , qm) =

1
9

m∑
i=1

qi,

and the set-valued mapping Bi : Hi ×Hi → 2Hi defined by

Bi(hi(pi), vi) =
{
hi(pi) +

vi

5
: pi ∈ [0, 11i] and vi ∈ (Vi,pi)ci(pi)

}
.

In the above view, it is easy to verify that 0 ∈ Ni(q1, q2, · · · , qm) ⊕ Gi(ui) + ωiBi(hi(pi), vi), that is,
problem (3.2) is satisfied.
Example 3.2. For i = 1, letH1 = R

n
p, Ω be a non-empty subset of Rn

p, B1 is single valued mapping and
V1 = I (identity mapping), and the other functions, that is G1, N1, S 1, U1, d1, c1 are equal to zero and
the fuzzy coalitions of players are identified with the measurable functions e1 from Ω to [0, 1]. Define
B : H1 ×H1 → H1 by

B(h1(p1), p1) =
∫

L
P(h1(u), u)h1(u)du,

we associate each player with its action P(., u), where P : Ω×H1 → R
n
p,Ω is a non-empty subset of Rn

p,
and each fuzzy coalition h1(u) with its action

∫
L

P(h1(u), u)h1(u)du. This continuum of players problem
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can be obtained from xtended system of fuzzy ordered variational inclusions (3.1). For more details
see Chapter 13 and Exercise 13.2 of the book “Optima and equilibria” by Aubin [6] and Example 3.1
in [4].

Related to the extended nonlinear system of fuzzy ordered variational inclusions (3.2), we consider
the following extended nonlinear system of fuzzy ordered resolvent equations problem:

For each i ∈ Λ, find (p1, p2, · · · , pm) ∈
m∏

i=1
Hi such that si ∈ Hi, S i,pi(pi) ≥ di(pi),Ui,pi(pi) ≥ ci(pi)

and Vi,pi(pi) ≥ ei(pi), i.e., qi ∈ (S i,pi)di(pi), ui ∈ (Ui,pi)ci(pi) and vi ∈ (Vi,pi)ei(pi),

Ni(q1, q2, · · · , qm) ⊙ λ−1
i ωiRBi(.,vi)(si) = Gi(ui), (3.5)

where λi > 0 is a constant and RBi(.,vi)(si) =
[
Ii ⊕Ai ◦ J

λi
Bi(.,vi)

]
(si).

The following lemma ensures the equivalence between the extended nonlinear system of fuzzy
ordered variational inclusions involving the ⊕ operation (3.1) and the extended nonlinear system of
fuzzy ordered resolvent equations problem (3.5).

Lemma 3.1. For each i ∈ Λ, let Ai, hi : Hi → Hi and Ni :
m∏

j=1
H j → Hi be the nonlinear ordered

single-valued comparison mappings, respectively. Let S i,Ui,Vi : Hi → Fi(Hi) andBi : Hi×Hi → 2Hi

be the set-valued mappings. Then, the followings are equivalent for each i ∈ Λ,

(i) (p1, p2, · · · , pm) ∈
m∏

i=1
Hi is a solution of problem (3.1),

(ii) for each i, pi ∈ Hi such that qi ∈ (S i,pi)di(pi), ui ∈ (Ui,pi)ci(pi) and vi ∈ (Vi,pi)ei(pi) is a fixed point of a
mapping Ti : Hi → 2Hi defined by

Ti(pi) = Ni(q1, q2, · · · , qm) ⊕ Gi(ui) + ωiBi(hi(pi), vi) + pi, (3.6)

(iii) (p1, p2, · · · , pm) ∈
m∏

i=1
Hi is a solution of the following equation:

hi(pi) = J
λi
Bi(.,vi)

[Ai(hi(pi)) ⊕
λi

ωi
(Ni(q1, q2, · · · , qm) ⊙ Gi(ui))], (3.7)

(iv) (p1, p2, · · · , pm) ∈
m∏

i=1
Hi is a solution of the problem (3.5), where

si = Ai(hi(pi)) ⊕
λi

ωi
(Ni(q1, q2, · · · , qm) ⊙ Gi(ui)),

hi(pi) = J
λi
Bi(.,vi)

(si). (3.8)

Proof. (i) =⇒ (ii) For each i ∈ Λ, adding pi to both sides of (3.2), we have

0 ∈ Ni(q1, q2, · · · , qm) ⊕ Gi(ui) + ωiBi(hi(pi), vi)
=⇒ pi ∈ Ni(q1, q2, · · · , qm) ⊕ Gi(ui) + ωiBi(hi(pi), vi) + pi = Ti(pi).

Hence, pi is a fixed point of Ti, for each i ∈ Λ.
(ii) =⇒ (iii) Let pi be a fixed point of Ti, then

AIMS Mathematics Volume 8, Issue 8, 18088–18110.
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pi ∈ Ti(pi) = Ni(q1, q2, · · · , qm) ⊕ Gi(ui) + ωiBi(hi(pi), vi) + pi

=⇒ Ai(hi(pi)) ⊕
λi

ωi

(
Ni(q1, q2, · · · , qm) ⊙ Gi(ui)

)
∈ [Ai ⊕ λiBi(·, vi)](hi(pi)).

Hence, hi(pi) = J
λi
Bi(.,vi)

[
Ai(hi(pi)) ⊕ λi

ωi

(
Ni(q1, q2, · · · , qm) ⊙ Gi(ui)

)]
, for each i ∈ Λ.

(iii) =⇒ (iv) Taking si = Ai(hi(pi)) ⊕ λi
ωi

(
Ni(q1, q2, · · · , qm) ⊙ Gi(ui)

)
, from (3.7), we have hi(pi) =

J
λi
Bi(.,vi)

(si), so,

si = Ai(hi(pi)) ⊕
λi

ωi

(
Ni(q1, q2, · · · , qm) ⊙ Gi(ui)

)
,

which implies that

si ⊕Ai(J
λi
Bi(.,vi)

(si)) =
λi

ωi

(
Ni(q1, q2, · · · , qm) ⊙ Gi(ui)

)
=⇒ [Ii ⊕Ai ◦ J

λi
Bi(.,vi)

](si) =
λi

ωi

(
Ni(q1, q2, · · · , qm) ⊙ Gi(ui)

)
=⇒ Ni(q1, q2, · · · , qm) ⊙ λ−1

i ωiRBi(.,vi)(si) = Gi(ui).

Consequently, (p1, p2, · · · , pm) ∈
m∏

i=1
Hi is a solution of the extended system of fuzzy ordered resolvent

equations problem (3.5), for each i ∈ Λ.
(iv) =⇒ (i), from (3.8) we have

hi(pi) = J
λi
Bi(.,vi)

(si)

= J
λi
Bi(.,vi)

[
Ai(hi(pi)) ⊕

λi

ωi

(
Ni(q1, q2, · · · , qm) ⊙ Gi(ui)

)]
,

so

Ai(hi(pi)) ⊕
λi

ωi

(
Ni(q1, q2, · · · , qm) ⊙ Gi(ui)

)
∈ [Ai ⊕ λiBi(., vi)]hi(pi),

which implies

0 ∈ Ni(q1, q2, · · · , qm) ⊕ Gi(ui) + ωiBi(hi(pi), vi).

Therefore, (p1, p2, · · · , pm) ∈
m∏

i=1
Hi is a solution of extended nonlinear system of fuzzy ordered

variational inclusions (3.1), for each i ∈ Λ. This completes the proof.

4. Main results

In this section, we discuss an existence and convergence result for the extended nonlinear system
of fuzzy ordered variational inclusions (3.1) and corresponding its extended nonlinear system of fuzzy
ordered resolvent equations problem (3.5).
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Theorem 4.1. For each i ∈ Λ = {1, 2, 3, · · · ,m}, letHi be a real Banach space equipped with the norm
∥.∥i and Ki be a normal cone with normal constant νi. Let S i,Ui,Vi : Hi → Fi(Hi) be closed fuzzy
mappings satisfying the following condition (∗), with functions di, ci, ei : Hi → [0, 1] such that for each
pi ∈ Hi, we have (S i,pi)di(pi), (Ui,pi)ci(pi) and (Vi,pi)ei(pi) in CB(Hi), respectively. LetAi, hi,Gi : Hi → Hi

and Ni :
m∏

j=1
H j → Hi be the nonlinear single-valued mappings. Let Bi : Hi ×Hi → 2Hi be an ordered

(αi, λi)-XOR-weak ANODD set-valued mapping with respect to the first argument. For each i ∈ Λ,
suppose that the following conditions hold:

(i) hi is continuous, βi-oredered compression and (ζi, ηi)-ordered restricted-accretive mapping, βi ∈

(0, 1) and ζi, ηi ∈ (0, 1], respectively;
(ii) Ai is continuous and τi-oredered compression mapping, τi ∈ (0, 1);

(iii) Gi is continuous, ϑi-order non-extended mapping and µi-oredered compression mapping, µi ∈

(0, 1) and ϑi > 0, respectively;
(iv) Ni is continuous, κi-ordered compression mapping in the ith-argument and κi, j-ordered

compression mapping in the jth-argument for each j ∈ Λ, i , j, respectively;
(v) S i, Ui and Vi are ordered Lipschitz type continuous mapping with constants δS i , δUi and δVi ,

respectively.

If the following conditions

(a) Jλi
Bi(.,xi)

(pi) ⊕ J
λi
Bi(.,yi)

(pi) ≤ ξi(xi ⊕ yi), for all pi, xi, yi ∈ Hi, ξi > 0, (4.1)

(b)


Θi = ωi(ζi + ηiβi + ξiδVi) + θi(τiβiω ⊕ λiµiδUi + λiκiδS i) < ωi min

{
1, 1

νi

}
,

Θi +
m∑

ℓ∈Λ, ℓ,i

νℓλℓθℓ
ωℓ

κℓ,iδS ℓ,i < 1, θi =
1

ϑi(αiλi⊕1) and αiλi > 1, for all i ∈ Λ
(4.2)

are satisfied, then there exists (p∗1, p∗2, · · · , p∗m) ∈
m∏

i=1
Hi such that qi ∈ (S i,pi)di(pi), ui ∈ (Ui,pi)ci(pi) and vi ∈

(Vi,pi)ei(pi) satisfies the extended nonlinear system of fuzzy ordered resolvent equations problem (3.5)
and so (p∗1, p∗2, · · · , p∗m) is a solution of the extended nonlinear system of fuzzy ordered variational
inclusions (3.2), respectively.

Proof. By Lemma 3.1, it is sufficient to prove that there exists (p∗1, p∗2, · · · , p∗m) satisfying (3.1). For

each i ∈ Λ, we define ϕi :
m∏

j=1
H j → Hi by

ϕi(p1, p2, · · · , pm) = pi + hi(pi) − J
λi
Bi(.,vi)

[Ai(hi(pi)) ⊕
λi

ωi
(Ni(q1, q2, · · · , qm) ⊙ Gi(ui))], (4.3)

for all (p1, p2, · · · , pm) ∈
m∏

i=1
Hi. Define ∥.∥∗ on

m∏
i=1
Hi by

∥(p1, p2, · · · , pm)∥∗ =
m∑

i=1

∥pi∥i, ∀ (p1, p2, · · · , pm) ∈
m∏

i=1

Hi. (4.4)

It is easy to see that
( m∏

i=1
Hi, ∥.∥∗

)
is a Banach space. Additionally, define ψ :

m∏
i=1
Hi →

m∏
i=1
Hi as follows:

ψ(p1, p2, · · · , pm) = (ϕ1(p1, p2, · · · , pm), ϕ2(p1, p2, · · · , pm), · · · , ϕm(p1, p2, · · · , pm)), (4.5)
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for all (p1, p2, · · · , pm) ∈
m∏

i=1
Hi. First of all, we prove that ψ is a contraction mapping.

Let (p1, p2, · · · , pm), ( p̂1, p̂2, · · · , p̂m) ∈
m∏

i=1
Hi be given. By assumptions (i)–(v) and Lemma 2.1, for

each i ∈ Λ, we have

0 ≤ ϕi(p1, p2, · · · , pm) ⊕ ϕi(p̂1, p̂2, · · · , p̂m)

=
[
pi + hi(pi) − J

λi
Bi(.,vi)

[Ai(hi(pi)) ⊕
λi

ωi
(Ni(q1, q2, · · · , qm) ⊙ Gi(ui))]

]
⊕
[
p̂i + hi( p̂i) − J

λi
Bi(.,v̂i)

[Ai(hi( p̂i)) ⊕
λi

ωi
(Ni(q̂1, q̂2, · · · , q̂m) ⊙ Gi(ûi))]

]
≤ ζi(pi ⊕ p̂i) + ηi(hi(p̂i) ⊕ hi( p̂i)) + ξi(vi ⊕ v̂i)

+J
λi
Bi(.,vi)

[Ai(hi(pi)) ⊕
λi

ωi
(Ni(q1, q2, · · · , qm) ⊙ Gi(ui))]

⊕J
λi
Bi(.,vi)

[Ai(hi( p̂i)) ⊕
λi

ωi
(Ni(q̂1, q̂2, · · · , q̂m) ⊙ Gi(ûi))]

≤ ζi(pi ⊕ p̂i) + ηi(hi( p̂i) ⊕ hi( p̂i)) + ξiDi(Vi(pi),Vi( p̂i))

+θi

(
(Ai(hi(pi)) ⊕Ai(hi( p̂i))) ⊕

λi

ωi

(
− (Ni(q1, q2, · · · , qm) ⊕ Gi(ui))

⊕(−Ni(q̂1, q̂2, · · · , q̂m) ⊕ Gi(ûi))
))

≤ ζi(pi ⊕ p̂i) + ηiβi(pi ⊕ p̂i) + ξiδVi(pi ⊕ p̂i) + θi

(
(τiβi(pi ⊕ p̂i))

⊕
λi

ωi

(
µi(ui ⊕ ûi)) ⊕ (Ni(q1, q2, · · · , qm) ⊕ Ni(q̂1, q̂2, · · · , q̂m))

)
≤ (ζi + ηiβi + ξiδVi)(pi ⊕ p̂i) +

(θi(τiβiωi ⊕ λiµiδUi)
ωi

(pi ⊕ p̂i)
)

⊕
(λiθi

ωi
(Ni(q1, q2, · · · , qm) ⊕ Ni(q̂1, q̂2, · · · , q̂m))

)
. (4.6)

Since Ni is a κi-ordered comparison mapping in the ith arguments and a κi j-ordered comparison
mapping in the jth arguments (i , j) , and S i is ordered δS i-Lipschitz continuous mapping.

Ni(q1, q2, · · · , qm) ⊕ Ni(q̂1, q̂2, · · · , q̂m)
≤ Ni(q1, q2, · · · , qi−1, qi, qi+1, · · · , qm) ⊕ Ni(q1, q2, · · · , qi−1, q̂i, qi+1, · · · , qm)

+
∑

j∈Λ, i, j

(Ni(q1, q2, · · · , q j−1, q j, q j+1, · · · , qm) ⊕ Ni(q1, q2, · · · , q j−1, q̂ j, q j+1, · · · , qm))

≤ κi(qi ⊕ q̂i) +
∑

j∈Λ, i, j

κi, j(q j ⊕ q̂ j) ≤ κiDi(S i(pi), S i( p̂i)) +
∑

j∈Λ, i, j

κi, jD j(S j(p j), S j(p̂ j))

≤ κiδS i(pi ⊕ p̂i) +
∑

j∈Λ, i, j

κi, jδS i, j(p j ⊕ p̂ j). (4.7)

Using (4.7), (4.6) becomes
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ϕi(p1, p2, · · · , pm) ⊕ ϕi(p̂1, p̂2, · · · , p̂m)

≤ (ζi + ηiβi + ξiδVi)(pi ⊕ p̂i) +
(
θi((τiβiωi ⊕ λiµiδUi) + λiκiδS i)

ωi
(pi ⊕ p̂i)

)
⊕

(
λiθi

ωi

∑
j∈Λ, i, j

κi, jδS i, j(p j ⊕ p̂ j)
)
.

By Definition 2.1 and Lemma 2.2, we have

∥ϕi(p1, p2, · · · , pm) ⊕ ϕi( p̂1, p̂2, · · · , p̂m)∥i

≤ Θi∥pi ⊕ p̂i∥i +
νiλiθi

ωi

∑
j∈Λ, i, j

κi, jδS i, j∥p j ⊕ p̂ j∥ j, (4.8)

where Θi =

(
νi(ζi + ηiβi + ξiδS i) +

νiθi(τiβiωi⊕λiµiδUi+λiκiδS i
ωi

)
.

From (4.5) and (4.8), we get

∥ψ(p1, p2, · · · , pm) ⊕ ψ(p̂1, p̂2, · · · , p̂m)∥∗

=

m∑
i=1

∥ϕi(p1, p2, · · · , pm) ⊕ ϕi(p̂1, p̂2, · · · , p̂m)∥i

≤

m∑
i=1

(
Θi∥pi ⊕ p̂i∥i +

νiλiθi

ωi

∑
j∈Λ, i, j

κi, jδS i, j∥p j ⊕ p̂ j∥ j

)
=

(
Θ1 +

m∑
ℓ=2

νℓλℓθℓ
ωℓ

κℓ,1δS ℓ,1

)
∥p1 ⊕ p̂1∥1 +

(
Θ2 +

m∑
ℓ∈Λ, ℓ,2

νℓλℓθℓ
ωℓ

κℓ,2δS ℓ,2

)
∥p2 ⊕ p̂2∥2

+
(
Θ3 +

m∑
ℓ∈Λ, ℓ,3

νℓλℓθℓ
ωℓ

κℓ,3δS ℓ,3

)
∥p3 − p̂3∥3 + · · · +

(
Θm +

m∑
ℓ=1

νℓλℓθℓ
ωℓ

κℓ,mδS ℓ,m

)
∥pm ⊕ p̂m∥m

≤ max
{
Θi +

m∑
ℓ∈Λ, ℓ,i

νℓλℓθℓ
ωℓ

κℓ,iδS ℓ,i : i ∈ Λ
} m∑

i=1

∥pi ⊕ p̂i∥i,

i.e.,

∥ψ(p1, p2, · · · , pm) ⊕ ψ( p̂1, p̂2, · · · , p̂m)∥∗ ≤ Ω∥(p1, p2, · · · , pm) ⊕ ( p̂1, p̂2, · · · , p̂m)∥∗, (4.9)

where Ω = max
{
Θi +

m∑
ℓ∈Λ, ℓ,i

νℓλℓθℓ
ωℓ

κℓ,iδS ℓ,i : i ∈ Λ
}
. The condition (4.2) guarantees that 0 ≤ Ω < 1.

By the inequality (4.9), we note that ψ is a contraction mapping. Therefore, there exists a unique

point (p∗1, p∗2, · · · , p∗m) ∈
m∏

i=1
Hi such that ψ(p∗1, p∗2, · · · , p∗m) = (p∗1, p∗2, · · · , p∗m). From (4.3) and (4.5), it

follows that (p∗1, p∗2, · · · , p∗m) such that q∗i ∈ (S i,p∗i )di(p∗i ), u∗i ∈ (Ui,p∗i )ci(p∗i ) and v∗i ∈ (Vi,p∗i )ei(p∗i ) satisfies in
Eq (3.7), i.e., for each i ∈ Λ,

hi(p∗i ) = Jλi
Bi(.,v∗i )[Ai(hi(p∗i )) ⊕

λi

ωi
(Ni(q∗1, q

∗
2, · · · , q

∗
m) ⊙ Gi(u∗i ))].
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By Lemma 3.1, we conclude that (p∗1, p∗2, · · · , p∗m) ∈
m∏

i=1
Hi is a unique solution of the extended

system of fuzzy ordered variational inclusions (3.2) and satisfies the extended system of fuzzy ordered
resolvent equations problem (3.5). This completes the proof.

For each i ∈ Λ, let Qi : Hi → Hi be a γi-ordered Lipschitz continuous mapping. We define the

self-mapping R :
m∏

i=1
Hi →

m∏
i=1
Hi by

R(p1, p2, · · · , pm) = (Q1 p1,Q2 p2, · · · ,Qm pm), ∀ (p1, p2, · · · , pm) ∈
m∏

i=1

Hi. (4.10)

Then, R = (Q1,Q2, · · · ,Qm) :
m∏

i=1
Hi →

m∏
i=1
Hi is a max{γi : i ∈ Λ}-ordered Lipschitz continuous

mapping with respect to the norm ∥.∥∗ in
m∏

i=1
Hi. To see this fact, let (p1, p2, · · · , pm), ( p̂1, p̂2, · · · , p̂m) ∈

m∏
i=1
Hi be given. Then, we have

∥R(p1, p2, · · · , pm) ⊕ R(p̂1, p̂2, · · · , p̂m)∥∗

=

m∑
i=1

∥Qi pi ⊕ Qi p̂i∥i ≤

m∑
i=1

γi∥pi ⊕ p̂i∥i

≤ max{γi : i ∈ Λ}
m∑

i=1

∥pi ⊕ p̂i∥i

= max{γi : i ∈ Λ}∥(p1, p2, · · · , pm) ⊕ ( p̂1, p̂2, · · · , p̂m)∥∗.

We denote the sets of all fixed points of Qi, i ∈ Λ and R by Fix(Qi) and Fix(R), respectively, and
the set of all solutions of the extended nonlinear system of fuzzy ordered variational inclusions (3.1)
by ENSFOVI(Ni,Gi,Bi, hi, i = 1, 2, · · · ,m). In view of (4.10), for any (p1, p2, · · · , pm) ∈
m∏

i=1
Hi, (p1, p2, · · · , pm) ∈ Fix(R) if and only if pi ∈ Fix(Qi), i ∈ Λ, i.e., Fix(R) =

Fix(Q1,Q2, · · · ,Qm) =
m∏

i=1
Fix(Qi).

If (p∗1, p∗2, · · · , p∗m) ∈ Fix(R) ∩ ESFOVI(Ni,Gi,Bi, hi, i = 1, 2, · · · ,m), then by using Lemma 3.1,
one can easily to see that for each i ∈ Λ, p∗i = Qi p∗i = p∗i − hi(p∗i ) +Jλi

Bi(.,v∗i )[Ai(hi(p∗i )) ⊕ λi
ωi

(Ni(q∗1, q
∗
2, · · · , q

∗
m) ⊙ Gi(u∗i ))]

= Qi
[
p∗i − hi(p∗i ) +Jλi

Bi(.,v∗i )[Ai(hi(p∗i )) ⊕ λi
ωi

(Ni(q∗1, q
∗
2, · · · , q

∗
m) ⊙ Gi(u∗i ))]

]
.

(4.11)

Based on Lemma 3.1, we construct an iterative algorithm for finding the approximate solution of
problem (3.1).

Iterative Algorithm 4.1. For each i ∈ Λ = {1, 2, 3, · · · ,m}, letAi, hi,Gi : Hi → Hi and Ni :
m∏

j=1
H j →

Hi be the nonlinear ordered single-valued comparison mappings, respectively. Let S i,Ui,Vi : Hi →

Fi(Hi) be closed fuzzy mappings that satisfy the following condition (∗), with functions di, ci, ei : Hi →
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[0, 1] such that for each pi ∈ Hi, qi ∈ (S i,pi)di(pi), ui ∈ (Ui,pi)ci(pi) and vi ∈ (Vi,pi)ei(pi). Let Bi : Hi ×Hi →

2Hi be the set-valued mapping. For any given pi,0 ∈ Hi, qi,0 ∈ (S i,pi,0)di(pi,0), ui,0 ∈ (Ui,pi,0)ci(pi,0) and
vi,0 ∈ (Vi,pi,0)ei(pi,0), compute the sequences {pi,n}, {qi,n}, {ui,n}, {vi,n}, and {si,n} by the following iterative
schemes with the supposition that pi,n+1 ∝ pi,n, qi,n+1 ∝ qi,n, ui,n+1 ∝ ui,n, vi,n+1 ∝ vi,n, and si,n+1 ∝ si,n,
for each i ∈ Λ and n = 0, 1, 2, · · · ,

si,n+1 = Ai(hi(pi,n)) ⊕ λi
ωi

(
Ni(q1,n, q2,n, · · · , qm,n) ⊙ Gi(ui,n)

)
,

pi,n+1 = (1 − αn)pi,n + αnQi
[
pi,n + hi(pi,n) − Jλi

Bi(.,vi,n)(si,n+1)
]
+ ri,n,

qi,n+1 ∈ (S pi,n+1)di(pi,n+1), qi,n+1 ⊕ qi,n ≤
(
1 + 1

n+1

)
D((S i,pi,n+1)di(pi,n+1), (S i,pi,n)di(pi,n)),

ui,n+1 ∈ (Upi,n+1)ci(pi,n+1), ui,n+1 ⊕ ui,n ≤
(
1 + 1

n+1

)
D((Ui,pi,n+1)ci(pi,n+1), (Ui,pi,n)ci(pi,n)),

vi,n+1 ∈ (Vpi,n+1)ei(pi,n+1), vi,n+1 ⊕ vi,n ≤
(
1 + 1

n+1

)
D((Vi,pi,n+1)ei(pi,n+1), (Vi,pi,n)ei(pi,n)),

(4.12)

where αn is a sequence in interval [0, 1] satisfying
∞∑

n=0
αn = ∞, {ri,n} are sequences in Hi introduced to

take the possible inexact computation of the resolvent operator point satisfying the following conditions

into account: ri,n ⊕ 0 = ri,n and
∞∑

n=0
∥(r1,n, r2,n, · · · , rm,n)∥ < ∞.

If for each i ∈ Λ, Qi = I, then Algorithm 4.1 reduces to the following algorithm.
Iterative Algorithm 4.2. For each i ∈ Λ, letAi, hi, Gi, Ni, Bi, S i, Ui, Vi, di, ci, ei be the same as in
Theorem 4.1 such that all the conditions of Algorithm 4.1 are satisfied. For any given pi,0 ∈ Hi, qi,0 ∈

(S i,pi,0)di(pi,0), ui,0 ∈ (Ui,pi,0)ci(pi,0) and vi,0 ∈ (Vi,pi,0)ei(pi,0), compute the sequences {pi,n}, {qi,n}, {ui,n}, {vi,n} and
{si,n} by the following iterative schemes with the supposition that pi,n+1 ∝ pi,n, qi,n+1 ∝ qi,n, ui,n+1 ∝ ui,n,
vi,n+1 ∝ vi,n and si,n+1 ∝ si,n, for each i ∈ Λ and n = 0, 1, 2, · · · ,

si,n+1 = Ai(hi(pi,n)) ⊕ λi
ωi

(
Ni(q1,n, q2,n, · · · , qm,n) ⊙ Gi(ui,n)

)
,

pi,n+1 = (1 − αn)pi,n + αn
[
pi,n + hi(pi,n) − Jλi

Bi(.,vi,n)(si,n+1)
]
+ ri,n,

qi,n+1 ∈ (S pi,n+1)di(pi,n+1), qi,n+1 ⊕ qi,n ≤
(
1 + 1

n+1

)
D((S i,pi,n+1)di(pi,n+1), (S i,pi,n)di(pi,n)),

ui,n+1 ∈ (Upi,n+1)ci(pi,n+1), ui,n+1 ⊕ ui,n ≤
(
1 + 1

n+1

)
D((Ui,pi,n+1)ci(pi,n+1), (Ui,pi,n)ci(pi,n)),

vi,n+1 ∈ (Vpi,n+1)ei(pi,n+1), vi,n+1 ⊕ vi,n ≤
(
1 + 1

n+1

)
D((Vi,pi,n+1)ei(pi,n+1), (Vi,pi,n)ei(pi,n)),

(4.13)

where the sequences {αn} and {ri,n} are the same as in Algorithm 4.1.
Theorem 4.2. For each i ∈ Λ, letAi, hi, Gi, Ni, Bi, S i, Ui, Vi, di, ci, ei be the same as in Theorem 4.1
such that all the conditions of Theorem 4.1 are satisfied. Let Qi : Hi → Hi be a γi-ordered Lipschitz

continuous mapping and R = (Q1,Q2, · · · ,Qm) :
m∏

i=1
Hi →

m∏
i=1
Hi be a max{γi : i ∈ Λ}-ordered Lipschitz

continuous mapping with respect to the norm ∥.∥∗ in
m∏

i=1
Hi. In addition, assume that the following

conditions are satisfied:
Θi = ωi(ζi + ηiβi + ξiδVi) + θi(τiβiω ⊕ λiµiδUi + λiκiδS i) < ωi min

{
1, 1

νi

}
,

Θi +
m∑

ℓ∈Λ, ℓ,i

γℓλℓθℓ
ωℓ

κℓ,iδS ℓ,i < 1, θi =
1

ϑi(αiλi⊕1) and αiλi > 1 for all i ∈ Λ.
(4.14)

If lim
n→∞
∥(r1,n ∨ (−r1,n), r2,n ∨ (−r2,n), · · · , rm,n ∨ (−rm,n))∥∗ = 0, then there exists p∗i , s

∗
i ∈ Hi such that

q∗i ∈ (S i,p∗i )di(p∗i ), u∗i ∈ (Ui,p∗i )ci(p∗i ) and v∗i ∈ (Vi,p∗i )ei(p∗i ), for each i ∈ Λ satisfying the extended system
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of fuzzy ordered resolvent equations (3.5) and so (p∗i , q
∗
i , u
∗
i , v
∗
i ) is a common solution of the extended

nonlinear system of fuzzy ordered variational inclusions (3.2) and the fixed point of Fix(Q1,Q2, ·,Qm),
and the iterative sequences {pi,n}, {qi,n}, {ui,n} and {vi,n} generated by Algorithm 4.1 converge strongly
p∗i , q∗i , u∗i and v∗i in Fix(Q1,Q2, · · · ,Qm) ∩ ESFOVI(Ni,Gi,Bi, hi, i = 1, 2, · · · ,m), for each i ∈ Λ,
respectively.
Proof. By Algorithm 4.1, Theorem 4.1, Lemmas 2.1 and 2.3, we have

∥pi,n+1 ⊕ pi,n∥i =
∥∥∥∥[(1 − αn)pi,n + αnQi

(
pi,n + hi(pi,n) − Jλi

Bi(.,vi,n)(si,n+1)
)
+ ri,n

]
⊕
[
(1 − αn)pi,n−1 + αnQi

(
pi,n−1 + hi(pi,n−1) − Jλi

Bi(.,vi,n−1)(si,n)
)]∥∥∥∥

i

≤ (1 − αn)∥pi,n ⊕ pi,n−1∥i + αnγi∥(pi,n + hi(pi,n)) ⊕ (pi,n−1 + hi(pi,n−1))∥i
+αnγi

(∥∥∥Jλi
Bi(.,vi,n)(si,n+1) ⊕ Jλi

Bi(.,vi,n)(si,n)
∥∥∥

i

+
∥∥∥Jλi
Bi(.,vi,n)(si,n) ⊕ Jλi

Bi(.,vi,n−1)(si,n)
∥∥∥

i

)
+ αn∥ri,n ⊕ 0∥i

≤ (1 − αn)∥pi,n ⊕ pi,n−1∥i + αnγi∥(pi,n + hi(pi,n)) ⊕ (pi,n−1 + hi(pi,n−1))∥i
+αnγiθi∥si,n+1 ⊕ si,n∥i + αnγiξi∥vi,n ⊕ vi,n−1∥i + αn∥ri,n ⊕ 0∥i. (4.15)

Since hi is a βi-ordered compression and a (ζi, ηi)-restricted-accerative mapping, respectively, and Vi is
δVi-D-Lipschitz continuous mapping, we have

(pi,n + hi(pi,n)) ⊕ (pi,n−1 + hi(pi,n−1)) ≤ ζi(pi,n ⊕ pi,n−1) + ηi(hi(pi,n) ⊕ hi(pi,n−1))
= (ζi + ηiβi)(pi,n ⊕ pi,n−1), (4.16)

and

(vi,n ⊕ vi,n−1) ≤
(
1 +

1
n + 1

)
δVi(pi,n ⊕ pi,n−1). (4.17)

Since hi is a βi-ordered compression mapping, Gi is a µi-ordered compression mapping, Ai is a τi-
ordered compression mapping, Ui is a δi-ordered compression mapping, and Ui is a δUi-D-Lipschitz
continuous mapping, we have

si,n+1 ⊕ si,n =
[
Ai(hi(pi,n)) ⊕

λi

ωi

(
Ni(q1,n, q2,n, · · · , qm,n) ⊙ Gi(ui,n)

)
⊕
[
Ai(hi(pi,n−1)) ⊕

λi

ωi

(
Ni(q1,n−1, q2,n−1, · · · , qm,n−1) ⊙ Gi(ui,n−1)

)]
≤

(
τiβi ⊕

λiµiδUi

ωi

(
1 +

1
n + 1

))
(pi,n ⊕ pi,n−1)

⊕
λi

ωi
(Ni(q1,n, q2,n, · · · , qm,n) ⊕ Ni(q1,n−1, q2,n−1, · · · , qm,n−1)). (4.18)

Since Ni is a κi-ordered comparison mapping in the ith arguments and a κi j-ordered comparison
mapping in the jth arguments (i , j) , and S i is an ordered δS i-Lipschitz continuous mapping.

Ni(q1,n, q2,n, · · · , qm,n) ⊕ Ni(q1,n−1, q2,n−1, · · · , qm,n−1)

≤ κiδS i

(
1 +

1
n + 1

)
(pi,n ⊕ pi,n−1) +

∑
j∈Λ, i, j

κi, jδS i, j

(
1 +

1
n + 1

)
(p j,n ⊕ p j,n−1). (4.19)
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Using (4.19), (4.18) becomes

∥si,n+1 ⊕ si,n∥i ≤
(
τiβi ⊕

λiµiδUi
ωi

(
1 + 1

n+1

)
+

λiκiδS i
ωi

(
1 + 1

n+1

))
∥pi,n ⊕ pi,n−1∥i

+ λi
ωi

∑
j∈Λ, i, j

κi, jδS i, j

(
1 + 1

n+1

)
∥p j,n ⊕ p j,n−1∥i. (4.20)

From (4.20), (4.15) becomes

∥pi,n+1 ⊕ p∗i,n∥i ≤ (1 − αn)∥pi,n ⊕ pi,n−1∥i + αnγi(ζi + ηiβi)∥pi,n ⊕ pi,n−1∥i

+αnγiθi

(
τiβi ⊕

λiµiδUi

ωi

(
1 +

1
n + 1

)
+
λiκiδS i

ωi

(
1 +

1
n + 1

))
∥pi,n ⊕ pi,n−1∥i

+αn
λiγiθi

ωi

∑
j∈Λ, i, j

κi, jδS i, j

(
1 +

1
n + 1

)
∥p j,n ⊕ p j,n−1∥i

+αnγiξiδVi

(
1 +

1
n + 1

)
∥pi,n ⊕ pi,n−1∥i + αn∥ri,n ⊕ 0∥i

≤ (1 − αn)∥pi,n ⊕ pi,n−1∥i + Θi,n∥pi,n ⊕ pi,n−1∥i

+αn
λiγiθi

ωi

∑
j∈Λ, i, j

κi, jδS i, j

(
1 +

1
n + 1

)
∥p j,n ⊕ p j,n−1∥i + αn∥ri,n ⊕ 0∥i, (4.21)

where Θi,n =
[
γi(ζi + ηiβi) + γiθi

(
τiβi ⊕

λiµiδUi
ωi

(
1 + 1

n+1

)
+

λiκiδS i
ωi

(
1 + 1

n+1

))
+ γiξiδVi

(
1 + 1

n+1

)]
.

Using (4.21), we have

∥(p1,n+1, p2,n+1, · · · , pm,n+1) ⊕ (p1,n, p2,n, · · · , pm,n)∥∗ =
m∑

i=1

∥pi,n+1 ⊕ pi,n∥i

≤

m∑
i=1

[
(1 − αn)∥pi,n ⊕ pi,n−1∥i + αnΘi,n∥pi,n ⊕ pi,n−1∥i

+αn
γiλiθi

ωi

∑
j∈Λ, i, j

κi, jδS i, j

(
1 +

1
n + 1

)
∥p j,n ⊕ p j,n−1∥ j + ∥ri,n ⊕ 0∥i

]
≤ (1 − αn)∥(p1,n, p2,n, · · · , pm,n) ⊕ (p1,n−1, p2,n−1, · · · , pm,n−1)∥∗

+αn max
1≤i≤m

{
Θi,n +

(
1 +

1
n + 1

) m∑
ℓ∈Λ, ℓ,i

γℓλℓθℓ
ωℓ

κℓ,iδS ℓ,i : i ∈ Λ
} m∑

i=1

∥pi,n ⊕ pi,n−1∥i

+∥(r1,n ∨ (−r1,n), r2,n ∨ (−r2,n), · · · , rm,n ∨ (−rm,n))∥∗,

i.e.,

∥(p1,n+1, p2,n+1, · · · , pm,n+1) ⊕ (p1,n, p2,n, · · · , pm,n)∥∗
≤

[
1 − αn(1 −Ωi,n)

]
∥(p1,n+1, p2,n+1, · · · , pm,n+1) ⊕ (p1,n, p2,n, · · · , pm,n)∥∗

+∥(r1,n ∨ (−r1,n), r2,n ∨ (−r2,n), · · · , rm,n ∨ (−rm,n))∥∗, (4.22)

where Ωi,n = max
1≤i≤m

{
Θi,n +

(
1 + 1

n+1

) m∑
ℓ∈Λ, ℓ,i

γℓλℓθℓ
ωℓ

κℓ,iδS ℓ,i : i ∈ Λ
}
.

Letting

Ω = max
1≤i≤m

{
Θi +

m∑
ℓ∈Λ, ℓ,i

νℓλℓθℓ
ωℓ

κℓ,iδS ℓ,i : i ∈ Λ
}
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and
Θi =

[
γi(ζi + ηiβi + ξiδVi) + γiθi

(
τiβi ⊕

λiµiδUi

ωi
+
λiκiδS i

ωi

)]
.

By condition (4.2), we have 0 ≤ Ω < 1, thus {(p1,n, p2,n, · · · , pm,n)} is a Cauchy sequence in
m∏

i=1
Hi

and as
m∏

i=1
Hi is complete, there exists (p∗1, p∗2, · · · , p∗m) ∈

m∏
i=1
Hi such that (p1,n, p2,n, · · · , pm,n) →

(p∗1, p∗2, · · · , p∗m) as n → ∞. Additionally, for each i ∈ Λ, pi,n → p∗i as n → ∞. From (4.12) of
Algorithm 4.1 and D-Lipschitz continuity of S i, Ui and Vi, we have

qi,n+1 ⊕ qi,n ≤
(
1 +

1
n + 1

)
δDS i

(pi,n+1 ⊕ pi,n), (4.23)

ui,n+1 ⊕ ui,n ≤
(
1 +

1
n + 1

)
δDUi

(pi,n+1 ⊕ pi,n), (4.24)

vi,n+1 ⊕ vi,n ≤
(
1 +

1
n + 1

)
δDVi

(pi,n+1 ⊕ pi,n). (4.25)

It is clear from (4.23)–(4.25) that {qi,n}, {ui,n} and {vi,n} are also Cauchy sequences inHi, so there exist
q∗i , u∗i and v∗i inHi such that qi,n → q∗i , ui,n → u∗i and vi,n → v∗i as n→ ∞, for each i ∈ Λ. Additionally,
for each i ∈ Λ, by using the continuity of the operators hi, S i, Ui, Vi,Jλ

B(.,v∗i ) and Algorithm 4.1, we have

p∗i = Qi
[
p∗i + hi(p∗i ) − Jλi

Bi(.,v∗i )[Ai(hi(p∗i )) ⊕
λi

ωi
(Ni(q∗1, q

∗
2, · · · , q

∗
m) ⊙ Gi(u∗i ))]

]
= p∗i + hi(p∗i ) − Jλi

Bi(.,v∗i )[Ai(hi(p∗i )) ⊕
λi

ωi
(Ni(q∗1, q

∗
2, · · · , q

∗
m) ⊙ Gi(u∗i ))],

which implies that

hi(p∗i ) = Jλi
Bi(.,v∗i )[Ai(hi(p∗i )) ⊕

λi

ωi
(Ni(q∗1, q

∗
2, · · · , q

∗
m) ⊙ Gi(u∗i ))].

By Lemma 3.1, we conclude that (p∗1, p∗2, · · · , p∗m) is a solution of problem (3.2). It remains to show
that q∗i ∈ (S i,p∗i )di(p∗i ), u∗i ∈ (Ui,p∗i )ci(p∗i ) and v∗i ∈ (Vi,p∗I )ei(p∗i ). Using Lemma 2.1, in fact,

di(q∗i , (S i,p∗i )di(p∗i )) ≤ ∥q∗i ⊕ qi,n∥i + di(qi,n, (S i,p∗i )di(p∗i ))
≤ ∥q∗i ⊕ qi,n∥i + Di((S i,pi,n)di(pi,n), (S i,p∗i )di(p∗i ))
≤ ∥qi,n ⊕ q∗i ∥i + δDS i

∥pi,n ⊕ p∗i ∥i → 0, as n→ ∞.

Hence q∗i ∈ (S i,p∗i )di(p∗i ). Similarly, we can show that u∗i ∈ (Ui,p∗i )ci(p∗i ) and v∗i ∈ (Vi,p∗i )ei(p∗i ), for each i ∈ Λ.
This completes the proof.

Taking Qi = I (identity mapping), for each i ∈ Λ in Algorithm 4.1, we can also prove the existence
and convergence result for the extended nonlinear system of fuzzy ordered variational inclusions
involving the ⊕ operation (3.1) and the extended nonlinear system of fuzzy ordered resolvent equations
problem (3.5).
Corollary 4.1. For each i ∈ Λ = {1, 2, 3, · · · ,m}, letHi be a real Banach space equipped with the norm
∥.∥i and Ki be a normal cone with normal constant νi. Let S i,Ui,Vi : Hi → Fi(Hi) be closed fuzzy
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mappings that satisfies the following condition (∗), with functions di, ci, ei : Hi → [0, 1] such that for
each pi ∈ Hi, we have (S i,pi)di(pi), (Ui,pi)ci(pi) and (Vi,pi)ei(pi) in CB(Hi), respectively. Let Ai, hi,Gi :

Hi → Hi and Ni :
m∏

j=1
H j → Hi be nonlinear single-valued mappings. Let Bi : Hi × Hi → 2Hi be an

ordered (αi, λi)-XOR-weak-ANODD set-valued mapping with respect to the first argument. Suppose
that the following conditions hold:

(i) hi is continuous, βi-oredered compression and (ζi, ηi)-ordered restricted-accretive mapping, βi ∈

(0, 1) and ζi, ηi ∈ (0, 1], respectively;
(ii) Ai is continuous and τi-oredered compression mapping, τi ∈ (0, 1);

(iii) Gi is continuous, ϑi-order non-extended mapping and µi-oredered compression mapping, µi ∈

(0, 1) and ϑi > 0, respectively;
(iv) Ni is continuous, κi-ordered compression mapping in the ith-argument and κi, j-ordered

compression mapping in the jth-argument for each j ∈ Λ, i , j, respectively;
(v) S i, Ui and Vi are ordered Lipschitz type continuous mapping with constants δS i , δUi and δVi ,

respectively.

In addition, the following conditions hold:

(a) Jλi
Bi(.,xi)

(pi) ⊕ J
λi
Bi(.,yi)

(pi) ≤ ξi(xi ⊕ yi), for all pi, xi, yi ∈ Hi, ξi > 0, (4.26)

(b)


Θi = ωi(ζi + ηiβi + ξiδVi) + θi(τiβiωi ⊕ λiµiδUi + λiκiδS i) < ωi,

Θi +
m∑

ℓ∈Λ, ℓ,i

λℓθℓ
ωℓ
κℓ,iδS ℓ,i < 1, θi =

1
ϑi(αiλi⊕1) and αiλi > 1, for all i ∈ Λ.

(4.27)

If lim
n→∞
∥(r1,n ∨ (−r1,n), r2,n ∨ (−r2,n), · · · , rm,n ∨ (−rm,n))∥∗ = 0, then there exists p∗i , s

∗
i ∈ Hi such that q∗i ∈

(S i,p∗i )di(p∗i ), u∗i ∈ (Ui,p∗i )ci(p∗i ) and v∗i ∈ (Vi,p∗i )ei(p∗i ), for each i ∈ Λ that satisfies the extended system of fuzzy
ordered resolvent equations (3.5) and so (p∗i , q

∗
i , u
∗
i , v
∗
i ) is a solution of the extended system of fuzzy

ordered variational inclusions (3.2), and the iterative sequences {pi,n}, {qi,n}, {ui,n}, and {vi,n} generated
by Algorithm 4.2 converge strongly p∗i , q

∗
i , u
∗
i and v∗i in ESFOVI(Ni,Gi,Bi, hi, i = 1, 2, · · · ,m), for each

i ∈ Λ, respectively.
Taking Gi = I (identity mapping), for each i ∈ Λ in Algorithm 4.1, we can also prove the existence

and convergence results for the extended nonlinear system of fuzzy ordered variational inclusions
involving the ⊕ operation (3.1) and the extended nonlinear system of fuzzy ordered resolvent equations
problem (3.5).
Corollary 4.2. For each i ∈ Λ = {1, 2, 3, · · · ,m}, letHi be a real Banach space equipped with the norm
∥.∥i and Ki be a normal cone with normal constant νi. Let S i,Ui,Vi : Hi → Fi(Hi) be closed fuzzy
mappings satisfying the following condition (∗), with functions di, ci, ei : Hi → [0, 1] such that for each
pi ∈ Hi, we have (S i,pi)di(pi), (Ui,pi)ci(pi) and (Vi,pi)ei(pi) in CB(Hi), respectively. Let Ai, hi : Hi → Hi

and Ni :
m∏

j=1
H j → Hi be the nonlinear single-valued mappings. Let Qi : Hi → Hi be a γi-ordered

Lipschitz continuous mapping and R = (Q1,Q2, · · · ,Qm) :
m∏

i=1
Hi →

m∏
i=1
Hi be a max{γi : i ∈ Λ}-ordered

Lipschitz continuous mapping with respect to the norm ∥.∥∗ in
m∏

i=1
Hi. Let Bi : Hi × Hi → 2Hi be a

ordered (αi, λi)-XOR-weak-ANODD set-valued mapping with respect to the first argument. Suppose
that the following conditions hold:
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(i) hi is continuous, βi-oredered compression and (ζi, ηi)-ordered restricted-accretive mapping, βi ∈

(0, 1) and ζi, ηi ∈ (0, 1], respectively;
(ii) Ai is continuous and τi-oredered compression mapping, τi ∈ (0, 1);

(iii) Ni is continuous, κi-ordered compression mapping in the ith-argument and κi, j-ordered
compression mapping in the jth-argument for each j ∈ Λ, i , j, respectively;

(iv) S i, Ui and Vi are ordered Lipschitz type continuous mapping with constants δS i , δUi and δVi ,
respectively.

In addition, the following conditions hold:

(a) Jλi
Bi(.,xi)

(pi) ⊕ J
λi
Bi(.,yi)

(pi) ≤ ξi(xi ⊕ yi), for all pi, xi, yi ∈ Hi, ξi > 0, (4.28)

(b)


Θi = ωi(ζi + ηiβi + ξiδVi) + θi(τiβiωi ⊕ λiδUi + λiκiδS i) < ωi min

{
1, 1

νi

}
,

Θi +
m∑

ℓ∈Λ, ℓ,i

λℓθℓ
ωℓ
κℓ,iδS ℓ,i < 1, θi =

1
ϑi(αiλi⊕1) and αiλi > 1, for all i ∈ Λ.

(4.29)

If lim
n→∞
∥(r1,n ∨ (−r1,n), r2,n ∨ (−r2,n), · · · , rm,n ∨ (−rm,n))∥∗ = 0, then there exists p∗i , s

∗
i ∈ Hi such that q∗i ∈

(S i,p∗i )di(p∗i ), u∗i ∈ (Ui,p∗i )ci(p∗i ) and v∗i ∈ (Vi,p∗i )ei(p∗i ), for each i ∈ Λ satisfying the extended nonlinear system
of fuzzy ordered resolvent equation (3.5) and so (p∗i , q

∗
i , u
∗
i , v
∗
i ) is a common solution of the extended

nonlinear system of fuzzy ordered variational inclusions (3.2) and the fixed point of Fix(Q1,Q2, ·,Qm),
and the iterative sequences {pi,n}, {qi,n}, {ui,n} and {vi,n} generated by Algorithm 4.1 converge strongly
p∗i , q∗i , u∗i and v∗i in Fix(Q1,Q2, ·,Qm) ∩ ENSFOVI(Ni,Gi,Bi, hi, i = 1, 2, · · · ,m), for each i ∈ Λ,
respectively.

Taking αn = 1, for all n ∈ N in Algorithm 4.1, we can also prove the existence and convergence
result for the extended nonlinear system of fuzzy ordered variational inclusions involving the ⊕
operation (3.1) and the extended nonlinear system of fuzzy ordered resolvent equations problem (3.5).
Corollary 4.3. For each i ∈ Λ = {1, 2, 3, · · · ,m}, letHi be a real Banach space equipped with the norm
∥.∥i and Ki be a normal cone with normal constant νi. Let S i,Ui,Vi : Hi → Fi(Hi) be closed fuzzy
mappings satisfying the following condition (∗), with functions di, ci, ei : Hi → [0, 1] such that for each
pi ∈ Hi, we have (S i,pi)di(pi), (Ui,pi)ci(pi) and (Vi,pi)ei(pi) in CB(Hi), respectively. LetAi, hi,Gi : Hi → Hi

and Ni :
m∏

j=1
H j → Hi be the nonlinear single-valued mappings. Let Bi : Hi × Hi → 2Hi be a ordered

(αi, λi)-XOR-weak-ANODD set-valued mapping with respect to the first argument. Suppose that the
following conditions hold:

(i) hi is continuous, βi-oredered compression and (ζi, ηi)-ordered restricted-accretive mapping, βi ∈

(0, 1) and ζi, ηi ∈ (0, 1], respectively;
(ii) Ai is continuous and τi-oredered compression mapping, τi ∈ (0, 1);

(iii) Gi is continuous, ϑi-order non-extended mapping and µi-oredered compression mapping, µi ∈

(0, 1) and ϑi > 0, respectively;
(iv) Ni is continuous, κi-ordered compression mapping in the ith-argument and κi, j-ordered

compression mapping in the jth-argument for each j ∈ Λ, i , j, respectively;
(v) S i, Ui and Vi are ordered Lipschitz type continuous mapping with constants δS i , δUi and δVi ,

respectively.

In addition, the following conditions hold:

(a) Jλi
Bi(.,xi)

(pi) ⊕ J
λi
Bi(.,yi)

(pi) ≤ ξi(xi ⊕ yi), for all pi, xi, yi ∈ Hi, ξi > 0, (4.30)
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(b)


Θi = (ζi + ηiβi + ξiδVi) + θi(τiβi ⊕ λiµiδUi + λiκiδS i) < 1,

Θi +
m∑

ℓ∈Λ, ℓ,i

λℓθℓ
ωℓ
κℓ,iδS ℓ,i < 1, θi =

1
ϑi(αiλi⊕1) and αiλi > 1, for all i ∈ Λ.

(4.31)

If lim
n→∞
∥(r1,n ∨ (−r1,n), r2,n ∨ (−r2,n), · · · , rm,n ∨ (−rm,n))∥∗ = 0, then there exists p∗i , s

∗
i ∈ Hi such that q∗i ∈

(S i,p∗i )di(p∗i ), u∗i ∈ (Ui,p∗i )ci(p∗i ) and v∗i ∈ (Vi,p∗i )ei(p∗i ), for each i ∈ Λ satisfying the extended nonlinear system
of fuzzy ordered resolvent equation (3.5) and so (p∗i , q

∗
i , u
∗
i , v
∗
i ) is a common solution of the extended

nonlinear system of fuzzy ordered variational inclusions (3.2) and the fixed point of Fix(Q1,Q2, ·,Qm)
and the iterative sequences {pi,n}, {qi,n}, {ui,n} and {vi,n} generated by Algorithm 4.1 converge strongly
p∗i , q∗i , u∗i and v∗i in Fix(Q1,Q2, · · · ,Qm) ∩ ENSFOVI(Ni,Gi,Bi, hi, i = 1, 2, · · · ,m), for each i ∈ Λ,
respectively.

The following numerical example gives the guarantee that all the proposed conditions of
Theorems 4.1 and 4.2 are satisfied.
Example 4.1. For each i ∈ Λ = {1, 2, 3, · · · ,m}, and letHi = R, with the usual inner product and norm
and Ki = {pi ∈ Hi : 0 ≤ pi ≤ 1} be a normal cone with normal constant δi =

1
i . Let S i, Ui, Vi and

di, ci, ei be defined the same as in Example 3.1. Let hi,Ai,Gi,Qi : Hi → Hi, andNi :
m∏

j=1
H j → Hi be

the mappings defined by for all pi ∈ Hi and j ∈ Λ,

hi(pi) =
pi

13i
, Ai(pi) =

pi

3i
, Gi(pi) =

pi

7i
, Qi(pi) =

pi

2i and Ti(p1, p2, · · · , p j, · · · , pm) =
x j

30i j
.

It is easy to verify that hi is a 1
10i -ordered compression and an

( 1
11i , 1

)
-ordered restricted-accretive

mapping, Gi is 1
9i -ordered compression and 1

5i -ordered non-extended mapping, and Ai is 1
2i -ordered

compression mapping. Further,

Ni(p1, p2, · · · , p j−1, p j, p j+1, · · · , pm) ⊕ Ni(p1, p2, · · · , pi−1, p̂i, pi+1, · · · , pm)

=
pi

30i2 ⊕
p̂i

30i2 ≤
1

30i
(pi ⊕ p̂i).

Hence, Ni is a 1
30i -ordered compression mapping in the ith argument.

Ni(p1, p2, · · · , pm) ⊕ Ni( p̂1, p̂2, · · · , p̂m)
≤ Ni(p1, p2, · · · , pi−1, pi, pi+1, · · · , pm) ⊕ Ni(p1, p2, · · · , pi−1, p̂i, pi+1, · · · , pm)

+
∑

j∈Λ, i, j

(Ni(p1, p2, · · · , p j−1, p j, p j+1, · · · , pm) ⊕ Ni(p1, p2, · · · , p j−1, p̂ j, p j+1, · · · , pm))

=
1

30i2 (pi ⊕ p̂i) +
∑

j∈Λ, i, j

1
30i j

(p j ⊕ p̂ j) ≤
1

30i
(pi ⊕ p̂i) +

∑
j∈Λ, i, j

1
30i j

(p j ⊕ p̂ j).

Suppose that the mappings Bi : Hi ×Hi → 2Hi are defined by

Bi(hi(pi), pi) = {13i3hi(pi) + 4i2 pi} = {5i2 pi}, ∀ pi ∈ Hi.

It is easy to verify that Bi is a 2i2-ordered rectangular compression mapping and a 1
i -weak-ordered

different comparison mapping. Additionally, it is clear that for λi =
1
i , [Gi ⊕ λiBi](Hi) = Hi, for each

i ∈ Λ. Hence, Bi is an ordered (2i2, 1
i )-XOR-weak ANODD set-valued mapping.
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The resolvent operator defined by (2.1) associated with Bi is given by

R
λi
Bi(.,vi)

(pi) =
7i

1 ⊕ 35i2 pi, ∀pi ∈ Hi, (4.32)

It is easy to examine that the resolvent operator defined above is a comparison, a single-valued
mapping, and Rλi

Bi(.,vi)
is 55i2

11i−1 -ordered Lipschitz continuous.

For each i ∈ Λ, in particular ωi = 2i and we define ϕi :
m∏

j=1
H j → Hi by

ϕi(p1, p2, · · · , pm) = pi + hi(pi) − J
λi
Bi(.,vi)

[Ai(hi(pi)) ⊕
λi

ωi
(Ni(q1, q2, · · · , qm) ⊙ Gi(ui))]

=
(13i + 1

13i
−

7i
35i2 − 1

( (60i2 − 7i)
420i5 −

1
39i2

))
pi.

It also confirms that assumptions (4.2) and (4.14) are fulfilled, where βi =
1

10i , ζi =
1

11i , ηi = 1, τi =
1
2i , µi =

1
9i , ϑi =

1
5i , ξi = 1, κi =

1
30i , κi j =

1
30i j , αi = 2i2, λi =

1
i , ωi = 2i, δS i =

1
4i , δUi =

1
2i , δVi =

1
6i and θi =

55i2
11i−1 . Therefore, all the conditions of Theorems 4.1 and 4.2 are satisfied. Therefore,

(0, 0, · · · , 0) is a fixed point of the mapping ψ(., ., · · · , .) = (ϕ1(.), ϕ2(.), · · · , ϕp(.)) defined by (4.5) as
well as the fixed point of R = (Q1,Q2, ·,Qm). By Lemma 3.1, (0, 0, · · · , 0) is a common solution
of the extended nonlinear system of fuzzy ordered variational inclusions (3.2) and the fixed point of
R = (Q1,Q2, ·,Qm).

5. Conclusions

In the draft, we had discussed an extended system of fuzzy ordered variational inclusions and
its corresponding extended system of fuzzy ordered resolvent equations with very suitable binary
structures in an ordered Banach space. We had looked upon the existence of the solution of an extended
system of fuzzy ordered variational inclusions and its corresponding extended system of fuzzy ordered
resolvent equations. On the basis of fixed point formulation, we formulated iterative schemes for the
said system of problems corresponding the resolvent equations involving special binary operations and
the fixed point problem. Furthermore, we discussed the existence of common solution and discuss the
convergence of the sequence of iterates generated by the algorithm for a considered problems. At the
end, we discussed some consequences of our main results. Notice that the benefits of such systems on
future research may work upon the forward-backward splitting method based on the inertial technique
for solving ordered inclusion problems and also develop some better versions of the algorithms for
solving the ordered inclusion problems in real ordered product Banach spaces with XOR and XNOR
operations.
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