The generalized (3+1)-dimensional Breaking soliton system (gBSS) has numerous applications across various scientific fields. This manuscript presents a study on important exact solutions of the gBSS, with a focus on novel solutions. Using the Hirota bilinear technique, we derive the general solution of the proposed system and obtain the novel solutions by considering different types of auxiliary functions. Our analysis includes the study of multi-solitons, multiple bifurcation solitons, lump wave solutions, M-shaped solitons, and their interactions. We also observe several hybrid solitons, including tuning fork-shaped, X-Y shaped, and double Y shaped. Our results are presented through graphical representations.
Citation: Saleh Mousa Alzahrani, Talal Alzahrani. Multiple solitons with bifurcations, lump waves, M-shaped and interaction solitons of three component generalized (3+1)-dimensional Breaking soliton system[J]. AIMS Mathematics, 2023, 8(8): 17803-17826. doi: 10.3934/math.2023908
The generalized (3+1)-dimensional Breaking soliton system (gBSS) has numerous applications across various scientific fields. This manuscript presents a study on important exact solutions of the gBSS, with a focus on novel solutions. Using the Hirota bilinear technique, we derive the general solution of the proposed system and obtain the novel solutions by considering different types of auxiliary functions. Our analysis includes the study of multi-solitons, multiple bifurcation solitons, lump wave solutions, M-shaped solitons, and their interactions. We also observe several hybrid solitons, including tuning fork-shaped, X-Y shaped, and double Y shaped. Our results are presented through graphical representations.
[1] | W. X. Ma, Riemann-Hilbert problems and soliton solutions of type $(-\lambda, \lambda)$ reduced nonlocal integrable mKdV hierarchies, Mathematics, 10 (2022), 870. https:/doi.org/10.1088/1572-9494/ac75e0 doi: 10.1088/1572-9494/ac75e0 |
[2] | J. Wu, A direct reduction approach for a shifted nonlocal nonlinear Schrödinger equation to obtain its N-soliton solution, Nonlinear Dyn., 108 (2022), 4021–4028. https://doi.org/10.1007/s11071-022-07354-1 doi: 10.1007/s11071-022-07354-1 |
[3] | K. Hosseini, M. Samavat, M. Mirzazadeh, S. Salahshour, D. Baleanu, A new (4+1)-dimensional Burgers equation: Its backlund transformation and real and complex N-kink solitons, Int. J. Appl. Comput. Math., 8 (2022), 172. https://doi.org/10.1007/s40819-022-01359-5 doi: 10.1007/s40819-022-01359-5 |
[4] | Y. X. Ma, B. Tian, Q. X. Qu, C. C. Wei, X. Zhao, Backlund transformations, kink soliton, breather- and travelling-wave solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics, Chin. J. Phys., 73 (2021), 600–612. https://doi.org/10.1016/j.cjph.2021.07.001 doi: 10.1016/j.cjph.2021.07.001 |
[5] | B. Q. Li, Y. L. Ma, Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid, Comput. Math. Appl., 76 (2018), 204–214. https://doi.org/10.1016/j.camwa.2018.04.015 doi: 10.1016/j.camwa.2018.04.015 |
[6] | M. S. Osman, A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Math. Methods Appl. Sci., 42 (2019), 6277–6283. https://doi.org/10.1002/mma.5721 doi: 10.1002/mma.5721 |
[7] | X. Yang, Z. Zhang, A. M. Wazwaz, Z. Wang, A direct method for generating rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation, Phys. Lett. A, 449 (2022), 128355. https://doi.org/10.1016/j.physleta.2022.128355 doi: 10.1016/j.physleta.2022.128355 |
[8] | Y. L. Ma, B. Q. Li, Interactions between rogue wave and soliton for a (2+1)-dimensional generalized breaking soliton system: Hidden rogue wave and hidden soliton, Comput. Math. Appl., 78 (2019), 827–839. https://doi.org/10.1016/j.camwa.2019.03.002 doi: 10.1016/j.camwa.2019.03.002 |
[9] | H. Wang, Lump and interaction solutions to the (2+1)-dimensional Burgers equation, Appl. Math. Lett., 85 (2018), 27–34. https://doi.org/10.1016/j.aml.2018.05.010 doi: 10.1016/j.aml.2018.05.010 |
[10] | L. Cheng, Y. Zhang, W. X. Ma, Wronskian $N$-soliton solutions to a generalized KdV equation in (2+1)-dimensions, Nonlinear Dyn., 111 (2023), 1701–1714. https://doi.org/10.1007/s11071-022-07920-7 doi: 10.1007/s11071-022-07920-7 |
[11] | D. Bilman, R. Buckingham, D. S. Wang, Far-field asymptotics for multiple-pole solitons in the large-order limit, J. Differ. Equ., 297 (2021), 320–369. https://doi.org/10.1016/j.jde.2021.06.016 doi: 10.1016/j.jde.2021.06.016 |
[12] | D. S. Wang, X. Zhu, Long-time asymptotics of the good Boussinesq equation with q xx-term and its modified version, J. Math. Phys., 63 (2022), 123501. https://doi.org/10.1063/5.0118374 doi: 10.1063/5.0118374 |
[13] | W. X. Ma, Dynamics of mixed lump-solitary waves of an extended (2+1)-dimensional shallow water wave model, Phys. Lett. A, 382 (2018), 3262–3268. https://doi.org/10.1016/j.physleta.2018.09.019 doi: 10.1016/j.physleta.2018.09.019 |
[14] | L. G. Huang, L. H. Pang, P. Wong, Y. Q. Li, S. Y. Bai, M. Lei, W. J. Liu, Analytic soliton solutions of cubic-quintic Ginzburg-Landau equation with variable nonlinearity and spectral filtering in fiber lasers, Ann. Phys. Berlin, 528 (2016), 493–503. https://doi.org/10.1002/andp.201500322 doi: 10.1002/andp.201500322 |
[15] | Y. L. Ma, A. M. Wazwaz, B. Q. Li, Novel bifurcation solitons for an extended Kadomtsev-Petviashvili equation in fluids, Phys. Lett. A, 413 (2021), 127585. https://doi.org/10.1016/j.physleta.2021.127585 doi: 10.1016/j.physleta.2021.127585 |
[16] | B. Q. Li, Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics, Appl. Math. Lett., 112 (2021), 106822. https://doi.org/10.1016/j.aml.2020.106822 doi: 10.1016/j.aml.2020.106822 |
[17] | S. Ahmed, A. R. Seadawy, S. T. R. Rizvi, Study of breathers, rogue waves and lump solutions for the nonlinear chains of atoms, Opt. Quantum Electron., 54 (2022), 320. https://doi.org/10.1007/s11082-022-03732-6 doi: 10.1007/s11082-022-03732-6 |
[18] | L. Kaur, A. M. Wazwaz, Bright-dark lump wave solutions for a new form of the (3+1)-dimensional BKP-Boussinesq equation, Rom. Rep. Phys., 71 (2019), 1–11. https://doi.org/10.1108/HFF-07-2018-0405 doi: 10.1108/HFF-07-2018-0405 |
[19] | S. T. R. Rizvi, M. Younis, D. Baleanu, H. Iqbal, Lump and rogue wave solutions for the Broer-Kaup-Kupershmidt system, Chin. J. Phys., 68 (2020), 19–27. https://doi.org/10.1016/j.cjph.2020.09.004 doi: 10.1016/j.cjph.2020.09.004 |
[20] | A. R. Seaway, S. T. R. Rizvi, A. Ahmad, S. Ahmed, Multiwave, rogue wave, periodic wave, periodic cross-lump wave, periodic cross-kink wave, lump soliton, breather lump, homoclinic breather, periodic cross-kink, M-shaped rational solutions and their interactions for the Degasperis-Procesi equation, Int. J. Mod. Phys. B, 2023, 2350172. https://doi.org/10.1142/S0217979223501722 |
[21] | Y. Liu, X. Y. Wen, D. S. Wang, The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation, Comput. Math. Appl., 77 (2019), 947–966. https://doi.org/10.1016/j.camwa.2018.10.035 doi: 10.1016/j.camwa.2018.10.035 |
[22] | Y. Liu, X. Y. Wen, D. S. Wang, Novel interaction phenomena of localized waves in the generalized (3+1)-dimensional KP equation, Comput. Math. Appl., 78 (2019), 1–19. https://doi.org/10.1016/j.camwa.2019.03.005 doi: 10.1016/j.camwa.2019.03.005 |