
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(8): 17803–17826.
DOI: 10.3934/math.2023908
Received: 15 March 2023
Revised: 28 April 2023
Accepted: 11 May 2023
Published: 24 May 2023

Research article

Multiple solitons with bifurcations, lump waves, M-shaped and interaction
solitons of three component generalized (3+1)-dimensional Breaking soliton
system

Saleh Mousa Alzahrani* and Talal Alzahrani

Department of Mathematics, University College in Al-Qunfudhah, Umm Al-Qura University,
Al-Qunfudhah, Saudi Arabia

* Correspondence: Email: salzahrani@uqu.edu.sa.

Abstract: The generalized (3+1)-dimensional Breaking soliton system (gBSS) has numerous
applications across various scientific fields. This manuscript presents a study on important exact
solutions of the gBSS, with a focus on novel solutions. Using the Hirota bilinear technique, we derive
the general solution of the proposed system and obtain the novel solutions by considering different
types of auxiliary functions. Our analysis includes the study of multi-solitons, multiple bifurcation
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presented through graphical representations.
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1. Introduction

The accurate analysis and interpretation of mechanisms and events in various nonlinear systems
arising in fluid mechanics, nonlinear optical fibers and applied sciences heavily relies on the discovery
of exact solutions of nonlinear equations. Various methods have been utilized by scholars to identify
exact solutions of several types to nonlinear partial differential equations (PDEs). In the quest to
analyze PDE solitons, researchers have utilized a range of analytical methods that includes inverse
scattering approach [1], reduction methods [2], ansatz technique [3], and other techniques [4]. The
bilinear method is powerful technique used to find analytic solutions to PDEs of nonlinear type.
Bilinear method is often referred to as the Hirota bilinear method, a term coined after Hirota’s original
proposal in 1971. Bilinear type operators are unique type of Backlund transformations which gives a
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unified approach to finding the Backl. . . und transformation solutions of the PDEs. This is primary
concept of the manuscript. The bilinear method has since evolved to create more comprehensive
solutions, including lumps [5], breathers [6], rogue waves [7], and other interaction solutions [8, 9].
Further, Cheng et al have studied N-solitons of the (2+1)-D generalized KdV model in [10]. Similarly
for some more useful and excellent works on asymptotics for solitons in large order limit, the reader is
referred to [11, 12]. We consider the following three component nonlinear (3 + 1)-dimensional
generalized breaking soliton system (gBSS) [13]

Wt + αUxxx + βUxxy + γUUx + λUUy + δUxV = 0,
Wx = Ux +Uy +Uz,Uy = Vx,

(1.1)

where α is a constant. The (3+1)-dimensional gBSS is a mathematical model that describes the
behavior of nonlinear waves in three-dimensional space and time. It consists of three components:
dispersion, nonlinearity, and dissipation. Dispersion refers to the spreading of waves, nonlinearity
refers to the interaction between waves, and dissipation refers to the loss of energy by waves. These
three components interact to produce a variety of phenomena, such as soliton formation and wave
breaking.

Whenever two or more than two solitons overlap, and interact in evolution system, they can either
collide elastically or pass through each other. During a soliton-soliton collision, the solitons maintain
their amplitude, speed, and path, except for a phase shift. This behavior is due to the balance between
nonlinearity and dispersion, which allows the solitons to interact without changing their properties.

Nonlinear physical systems can support multiple solitons that can coexist and interact with each
other. The interaction between solitons is a natural response of the system and can lead to complex
dynamics. The shapes and arrangements of natural phenomena such as plants, streams, mountains,
and many others can fall into a vast category of naturally occurring phenomena known as bifurcation.
Bifurcation refers to the emergence of complex behavior from the interaction between multiple
solitons, leading to the creation of intricate patterns and structures. Solitons capable of splitting or
combining during soliton interactions are called bifurcation solitons, and they can effectively replicate
the bifurcation phenomenon of nonlinear processes. Recently, a Y-type soliton, the simplest
bifurcation soliton, was discovered by two-soliton fusion [14, 15]. In physics, lump wave refer to a
type of wave solution that behaves like a localized lump or a pulse of energy that travels through a
medium. These waves can arise in nonlinear systems where the wave speed depends on the amplitude
of the wave, leading to wave packets that retain their shape and energy as they propagate. In
mathematics, the term may refer to a particular type of solution of partial differential equations, such
as the Korteweg–de Vries equation, which describes the propagation of nonlinear waves in dispersive
media [16, 17]. The lump wave solution of this equation is a localized solution that behaves like a
soliton, maintaining its shape and speed over time. Overall, the concept of lump wave solutions has
important applications in various fields, including physics, mathematics, and engineering. In [18],
researchers presented the dynamics bright as well as dark lump solutions for a novel BKP-Boussinesq
model in (3+1)-dimensions. Additionally, lump and rogue waves for Broer Kaup Kupershmidt model
is studied by the authors in [19]. The coexistence of rogue waves, M-shaped solitons, and other types
of solitons were reported in [20].
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2. Bilinear form

Here we present the bilinear form (BF) of the suggested system. To calculate BF of the proposed
Eq (1.1), in [13] authors have selected λ = δ = 3β and γ = 6α, then substituting these into Eq (1.1),
and obtained the following

∂−1
x (Uxt +Uzt +Uyt) + βUxxy + αUxxx + 6αUUx + 3βUx∂

−1
x Uy + 3βUUy = 0. (2.1)

Now upon the substitution of U = φx = 2(ln Υ)xx and V = φy = 2(ln Υ)xy, where
φ = $x = 2(ln Υ)x, Υ, φ and $ are real functions of (x, y, z, t), the following bilinear form is obtained

αΥΥxxxx − 4αΥxΥxxx + 3αΥ2
xx + βΥΥxxxy − βΥxxxΥy − 3βΥxΥxxy + 3βΥxxΥxy

+ ΥΥxt − ΥxΥt + ΥΥyt − ΥyΥt + ΥΥzt − ΥzΥt = 0.
(2.2)

In HirotaD−operator form above equation can be written as

(DxDt +DyDt +DzDt + αD4
x + βD3

xDy)Υ.Υ = 0.

Where theD−operator is defined as

Q∏
σ=1

Dζσ
xσA.B =

Q∏
σ=1

(
∂

∂xσ
−

∂

∂x′σ

)ζσ
A(x)B(x′) |x′=x, (2.3)

where x = (x1, x2, . . . , xK ), x′ = (x′1, x
′
2, . . . , x

′
Q

),denotes vectors and ζ1, ζ2, . . . , ζQ ∈ Z+. There will be
two various types of exact solutions for the suggested equation which are presented below

U = 2
ΥxxΥ − (Υx)2

Υ2 , (2.4)

V = 2
ΥxyΥ − ΥxΥy

Υ2 . (2.5)

3. First order soliton

Here we begin the study on soliton solutions from the first order soliton of proposed model Eq (1.1),
first we calculate constraint condition. In order to calculate the constraint condition we consider the
following function

Q = eKς , (3.1)

where
Kς = %ςx + ζςy + γςz − λςt, ς ∈ Z+. (3.2)

Now inserting Eq (3.1) in Eq (1.1) except nonlinear terms, and after doing so solving the resulting
equation for λς, we get

λς =
%4
ςα + %3

ςζβ

%ς + ζς + γς
, (3.3)

AIMS Mathematics Volume 8, Issue 8, 17803–17826.



17806

for obtaining soliton of the first order, one can consider auxiliary function Υ as follows

Υ = 1 + eK1 , (3.4)

where K1 = %1x + ζ1y + γ1z − λ1t, putting Eq (3.4) into Eqs (2.4) and (2.5) repectively we obtained the
first order soliton solutions as follows

U =
%2

1

1 + cosh(K1)
. (3.5)

V =
%1ζ1

1 + cosh(K1)
. (3.6)

Equation (3.5) is visualized in Figure 1a, while the exact solution Eq (3.6) is presented in Figure 1b,
where one soliton is observed.

(a) (b)

Figure 1. The 3D dynamics of the first-order soliton solutions Eqs (3.5) and (3.6) with
parameters used as z = 1, t = 1, ρ1 = 0.8, ζ1 = 1, γ1 = 1, α = 1, β = 1.

4. Second order soliton with bifurcation

Here, we find the soliton solution of second order. Therefore we take the Υ as sum of the two
exponential functions and its product in the form of

Υ = 1 + eK1 + eK2 + R12eK1+K2 , (4.1)

here the Kς, with ς = 1, 2 can be obtained from the Eq (3.2). Next we put Eq (4.1) into Eq (2.2) and
solve the obtained result for the dispersion coefficient (DC) R12, hence we get

R12 =
P12λ1 + Q12λ2 + (%4

1 + %4
2)α + (−4%2

1 + 6%1%2 − 4%2)%1%2α + (%1 − %2)3(ζ1 − ζ2)β
R12(λ1 + λ2) − (%4

1 + %4
2)α + (−4%2

1 − 6%1%2 − 4%2
2)%1%2α − (%1 − %2)3(ζ1 + ζ2)β

, (4.2)

whereP12 = −%1 +%2−ζ1 +ζ2−γ1 +γ2, Q12 = %1−%2 +ζ1−ζ2 +γ1−γ2 and R12 = %1 +%2 +ζ1 +ζ2 +γ1 +γ2.
In more general format the Eq (4.2) can be written as

Ω = 1 + eKσ + eKΩ + CσΩeKσ+KΩ , (4.3)
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in the similar fashion the second-order dispersion coefficient R12 can be expressed generally as

RσΩ =
PσΩλσ + QσΩλΩ + (%4

σ + %4
Ω)α + (−4%2

σ + 6%σ%Ω − 4%Ω)%σ%Ωα + (%σ − %Ω)3(ζσ − ζΩ)β
RσΩ(λσ + λΩ) − (%4

σ + %4
Ω)α + (−4%2

σ − 6%σ%Ω − 4%2
Ω)%σ%Ωα − (%σ − %Ω)3(ζσ + ζΩ)β

, (4.4)

where 1 ≤ σ < Ω ≤ 2. Next to obtain the exact soliton solution of order two, we substitute Eq (4.1) with
Eq (4.2) into Eqs (2.4) and (2.5) respectively, we obtained the following two second order solutions

U = 2

−
(
%1eK1 + %2eK2 + (%1 + %2)R12eK1+K2

)2

M2

+
%2

1eK1 + %2
2eK2 + (%1 + %2)2R12eK1+K2

M

)
, (4.5)

V = 2

−

(
%1eK1 + %2eK2 + (%1 + %2)R12eK1+K2

)
M2

×
(
ζ1eK1 + ζ2eK2 + (ζ1 + ζ2)R12eK1+K2

))
(4.6)

+
%1ζ1eK1 + %2ζ2eK2 + (%1 + %2)(ζ1 + ζ2)R12eK1+K2

M

)
.

Where M = 1 + eH1 + eH2 + R12eH1+H2 . The first solution (4.5) is visualized in Figure 2, while the
second solution (4.6) is graphically depicted in Figure 3 by using suitable parameters values. In these
figures one can observe the X-type soliton solutions.

(a) (b)

Figure 2. The 3D behavior of the second order soliton solution Eq (4.5) with parameters
used as z = 1, t = 1, ρ1 = 0.4, ρ2 = 1, ζ1 = −0.8, ζ2 = 1, γ1 = 1, γ2 = 1, α = 1, β = 1.
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(a) (b)

Figure 3. The 3D behavior of the second order soliton solution Eq (4.6) with parameters
used as z = 1, t = 1, ρ1 = 0.5, ρ2 = 1, ζ1 = 1.1, ζ2 = 1, γ1 = 1, γ2 = 1, α = 1, β = 1.

4.1. Bifurcation of second order soliton

In this part, we present the bifurcation in soliton of third order with the consideration of the
dispersion coefficient R12 = 0 in Eq (5.1), therefore Υ takes the form

Υ = 1 + eK1 + eK2 , (4.7)

to get the bifurcation of soliton of order two, we first insert Eq (4.7) into Eq (2.4) and then into Eq (2.5).
After obtaining the exact solutions we simulate them with consideration of proper values of parameters
which are presented in Figures 4 and 5, where the y-type soliton is observed.

(a) (b)

Figure 4. The 3D and 2D behavior of the y-type bifurcation in second order soliton solution
with parameters used as z = 1, t = 1, ρ1 = 0.4, ρ2 = 1, ζ1 = −0.8, ζ2 = 1, γ1 = 1, γ2 =

1, α = 1, β = 1.
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(a) (b)

Figure 5. The 3D and 2D behavior of the y-type bifurcation in second order soliton solution
with parameters used as z = 1, t = 1, ρ1 = 0.5, ρ2 = 1, ζ1 = 1.1, ζ2 = 1, γ1 = 0.8, γ2 = 1, α =

1, β = 1.

5. Solitons of order three and bifurcation

In this part, we calculate and demonstrate the soliton solution of order three. To do so, we consider
the function Υ in following form

Υ = 1 + eK1 + eK2 + eK3 + R12eK1+K2 + R13eK1+K3 + R23eK2+K3 + R123eK1+K2+K3 , (5.1)

whereKς, ς = {1, 2, 3} follows from Eq (3.2). Further, one can verify that the R123 satisfy the following
relation

R123 = R12 × R13 × R23. (5.2)

Generally, the function Υ for the soliton of order three can be expressed as

Ω = 1 +

3∑
σ=1

eKσ + CσΩeKσ+KΩ + CσϕeKσ+Kϕ + CΩϕeKΩ+Kϕ + CσΩϕeKσ+KΩ+Kϕ ,

where 1 ≤ σ < Ω < ϕ. The first soliton solution of order three can be acquired by inserting Eq (5.1)
with Eq (5.2) into Eq (2.4). The graphical visualization of first solution with proper parameters is
shown in the Figure 6. In similar way, the second soliton solution of order three can be acquired by
putting Eq (5.1) with Eq (5.2) into Eq (2.5). The graphical visualization of second solution with proper
parameters is shown in the Figure 7. In Figure 6, we have considered various values of ζ3, where we
observe its affects on the dynamics of wave. Similarly, in Figure 7, the ζ is varied which reveals that
the increase in this parameter contracts the waves to small region.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. The 3D and 2D physical dynamics of the soliton solution of order three obtained
by substituting Eq (5.1) with Eq (5.2) in Eq (2.4) with parameters considered as z = t =

α = β = 1, ρ1 = 0.8, ρ2 = 1, ρ3 = 0.98 ζ1 = −0.8, ζ2 = 1, γ1 = γ2 = γ3 = 1, and
(a, b) ζ3 = 0.1, (c, d) ζ3 = 1.1, (e, f ) ζ3 = 2.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. The 3D and 2D physical dynamics of the soliton of order three obtained by
substituting Eq (5.1) with Eq (5.2) in Eq (2.5) with parameters considered as z = t =

α = β = 1, ρ2 = 1, ρ1 = 0.5, ρ3 = 0.95 ζ1 = 1.1, ζ2 = 1, γ1 = γ2 = γ3 = 1, and
(a, b) ζ3 = 0.3, (c, d) ζ3 = 0.7, (e, f ) ζ3 = 1.2.

5.1. Bifurcation of third order soliton

In this part, we would like to include the bifurcation of third order soliton by supposing the DC to
be zero, and will see its affects on the dynamics of third order soliton of such supposition. So, first
consider R12 = 0 in Eq (5.1), so Υ become

Υ = 1 + eK1 + eK2 + eK3 + R13eK1+K3 + R23eK2+K3 , (5.3)
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where R13 and R23 can be collected from Eq (4.4). Next to get the bifurcation of third order soliton
we insert Eq (5.3) into Eq (2.4), and after doing so graphically present the obtained result is depicted
in Figure 8. Similarly to find the bifurcation of the second third order soliton, put Eq (5.3) into the
Eq (2.5). The obtained result is graphically presented in Figure 9 with suitable parameters.

(a) (b)

(c) (d)

(e) (f)

Figure 8. The 3D and 2D physical dynamics of the soliton solution of order three obtained
with the insertion of Eq (5.3) with Eq (5.2) in Eq (2.4) with parameters considered as z =

t = α = β = 1, ρ1 = 0.8, ρ2 = 1, ρ3 = 0.98 ζ1 = −0.8, ζ2 = 1, γ1 = γ2 = γ3 = 1, and
(a, b) ζ3 = 0.1, (c, d) ζ3 = 1.1, (e, f ) ζ3 = 2.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. The 3D and 2D physical dynamics of the soliton solution of order three obtained
with substituting Eq (5.3) along with Eq (5.2) in Eq (2.5) with parameters considered as
z = t = α = β = 1, ρ1 = 0.3, ρ2 = 1, ρ3 = 0.95 ζ1 = 1.2, ζ2 = 1.9, ζ3 = 0.7, γ2 = 2, γ3 = 1,
and (a, b) γ1 = −0.5, (c, d) γ1 = 0.2, (e, f ) γ1 = 2.

Further we set R13 = 0 in Eq (5.1), so that the auxiliary function Υ takes the form

Υ = 1 + eK1 + eK2 + eK3 + R12eK1+K3 + R23eK2+K3 , (5.4)

where the DCs R12 and R23 can be found from Eq (4.4). To observe the bifurcation with R13 = 0, we

AIMS Mathematics Volume 8, Issue 8, 17803–17826.



17814

insert Eq (5.4) into the Eq (2.4) and then into Eq (2.5) which are simulated with suitable parameters in
Figures 10 and 11 respectively.

(a) (b)

(c) (d)

(e) (f)

Figure 10. The 3D and 2D physical dynamics of the soliton of order three obtained by
substitution of Eq (5.4) with Eq (5.2) in Eq (2.4) with parameters considered as z = t =

α = β = 1, ρ1 = 0.8, ρ2 = 1, ζ1 = −0.8, ζ2 = 1, ζ3 = 0.1, γ1 = γ2 = γ3 = 1, and
(a, b) ρ3 = 2.1, (c, d) ρ3 = 1.8, (e, f ) ρ3 = 0.98.
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(a) (b)

(c) (d)

(e) (f)

Figure 11. The 3D and 2D physical dynamics of the soliton solution of order three obtained
with insertion of Eq (5.4) with Eq (5.2) in Eq (2.5) with parameters considered as z = t =

α = β = 1, ρ1 = 0.5, ρ2 = 1, ρ3 = 0.95 ζ1 = 1.1, ζ3 = 2.7, γ1 = γ2 = γ3 = 1, and
(a, b) ζ2 = 3.1, (c, d) ζ2 = 2.1, (e, f ) ζ2 = 1.1.

In Figure 8, it can be seen that at ζ3 = 1.1 the tuning fork shaped soliton is observed. Further, in
Figure 9, complex type bifurcated soliton is observed. Figure 10 shows the combined x-y-type solitons
dynamics and Figure 11 shows the x-type soliton solution.
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6. Fourth order solitons with bifurcation

This part presents the supposition of Υ in a appropriate way to get fourth-order solitons solution of
suggested Eq (1.1). To get so, we consider Υ as presented below:

Υ =1 +

4∑
δ=1

eKδ +
∑

1≤δ<Υ≤4

RδΥeKδ+KΥ +
∑

1≤δ<Υ<ϕ≤4

RδΥϕeKδ+KΥ+Kϕ (6.1)

+ R1234eK1+K2+K3+K4 ,

where in Eq (6.1), RδΥ follow Eq (4.4) and RδΥϕ satisfy Eq (5.2). Moreover, it can be found that the
fourth order DC satisfy:

R1234 = R12 × R13 × R14 × R23 × R24 × R34. (6.2)

One can obtain fourth-order solitons solution by substituting Eq (6.1) with Eq (6.2) in the Eqs (2.4)
and (2.5). The graphical demonstrations of the fourth order solitons with suitable parameters are
visualized in the Figures 12 and 13.

(a) (b)

(c) (d)

Figure 12. The 3D and 2D behavior of fourth-order solitons of Eq (2.4) with z = t = α =

β = 1, ρ1 = 0.5, ρ2 = 1, ρ3 = 0.95, ρ4 = 0.95 ζ1 = 1.1, ζ3 = 2.7, ζ4 = 2.7, γ1 = γ2 = γ3 =

γ4 = 1, [(a), (b)], ζ2 = 0.3, z = 0.5 and [(c), (d)], ζ2 = 0.8, y = 1.

AIMS Mathematics Volume 8, Issue 8, 17803–17826.
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(a) (b)

(c) (d)

Figure 13. The 3D and 2D behavior of fourth-order solitons of Eq (2.5) with the parameters
supposed as t = α = β = 1, ρ1 = 0.5, ρ2 = 1, ρ3 = 0.95, ρ4 = 0.95 ζ1 = 1.1, ζ3 = 2.7, ζ4 =

2.7, γ1 = γ2 = γ3 = γ4 = 1, [(a), (b)], ζ2 = 0.3, z = 1 and [(c), (d)], ζ2 = 0.8, y = 1.

6.1. Bifurcation in fourth order solitons

Here, we suppose various dispersion coefficients as zeros due to which bifurcation is obtained of
the suggested Eq (1.1). To do so, we suppose R12 = 0 in the auxiliary function, so we obtain

Υ =1 +

4∑
δ=1

eKδ + R13eK1+K3 + R14eK1+K2 + R23eK2+K3 + R24eK2+K4 + R34eK3+K4 (6.3)

+ R134eK1+K3+K4 + R234eK2+K3+K4 ,

where in Eq (6.3), R134 and R234 satisfy Eq (5.2). Solution of bifurcation of fourth-order solitons can
be acquired by substituting Eq (6.3) in the Eqs (2.4) and (2.5). The physical demonstrations of the
bifurcation of fourth order soliton with suitable parameters are visualized in the Figures 14 and 15.
Further we suppose the DC R12 = R23 = R34 as zeros. So we get the following form of Υ

Υ =1 +

4∑
δ=1

eKδ + R13eK1+K3 + R14eK1+K2 + R24eK2+K4 . (6.4)
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Solution of bifurcation of fourth-order solitons can be acquired by substituting Eq (6.4) in the
Eqs (2.4) and (2.5). The physical demonstrations of the bifurcation of fourth order soliton with
suitable parameters are visualized in the Figures 16 and 17.

(a) (b)

(c) (d)

Figure 14. The 3D and 2D physical dynamics of bifurcation soliton solution of order four
with parameters considered as z = α = β = 1, ρ1 = 0.5, ρ2 = 1, ρ3 = 0.95, ρ4 =

0.95 ζ1 = 1.1, ζ3 = 2.7, ζ4 = 2.7, γ1 = γ2 = γ3 = γ4 = 1, [(a), (b)], ζ2 = 0.1, t = 1 and
[(c), (d)], ζ2 = 0.3, y = 1.

AIMS Mathematics Volume 8, Issue 8, 17803–17826.



17819

(a) (b)

(c) (d)

Figure 15. The 3D and 2D physical dynamics of the bifurcation solitons of order four with
parameters considered as t = α = β = 1, ρ1 = 0.5, ρ2 = 1, ρ3 = 0.95, ρ4 = 0.95 ζ1 =

1.1, ζ3 = 2.7, ζ4 = 2.7, γ1 = γ2 = γ3 = γ4 = 1, [(a), (b)], ζ2 = 0.3, z = 1 and [(c), (d)], ζ2 =

0.8, y = 1.

AIMS Mathematics Volume 8, Issue 8, 17803–17826.



17820

(a) (b)

(c) (d)

Figure 16. The 3D and 2D physical dynamics of bifurcation soliton solution of order four in
Eq (2.4) with parameters considered as z = α = β = 1, ρ1 = 0.5, ρ2 = 1, ρ3 = 0.99, ρ4 =

1 ζ1 = −0.8, ζ2 = 1, ζ3 = 0.9, ζ4 = 2, γ1 = 0.1, γ2 = γ3 = γ4 = 1, [(a), (b)], ρ1 = 0.6, t = 1
and [(c), (d)], ρ1 = 0.8, y = 1.
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(a) (b)

(c) (d)

Figure 17. The 3D and 2D physical dynamics of the bifurcation solitons of order four with
parameters considered as t = α = β = 1, ρ2 = 1, ρ3 = 0.98, ρ4 = 1 ζ1 = 0.1, ζ2 = 1, ζ3 =

1, ζ4 = 1.9, γ1 = γ2 = γ3 = γ4 = 1, [(a), (b)], ρ1 = 0.55, z = 1 and [(c), (d)], ρ1 =

0.8, y = 1.

7. Various soliton structures

In this section, we derive various soliton structures including lump wave, interaction and M as well
as W shaped solitons with the consideration of suitable auxiliary functions.

7.1. Lump waves

This part presents the lump wave solutions of the suggested (3+1)-dimensional gBSS by choosing
the transformation in the form [21, 22]

Υ = (ς1x + ς2y + ς3z + ς4t + ς5)2 + (ς6x + ς7y + ς8z + ς9t + ς10)2 + ς11. (7.1)

On substituting Eq (7.1) in Eq 3.2, and equating the coefficients of variables x, y, z and t along with
the combinations of them as well as various powers, we obtained a system comprised of algebraic
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equations. The solution of the obtained system yields the following values

α = −
β
(
ς1ς2 − ς

2
7 − ς7ς8

)
ς2

1 + ς2
7 + 2ς7ς8 + ς2

8

, ς3 = −ς1 − ς2, ς6 = −ς7 − ς8, ς9 = −
ς4

(
ς2

2 − ς
2
7

)
2ς2ς7

. (7.2)

Next inserting the parameter values Eq (7.2) into Eq (7.1), and then putting into Eqs (2.4) and (2.5) we
obtained two exact solutions. The dynamics of the exact solutions Eqs (2.4) and (2.5) are presented in
Figure 18 with suitable parameters.

(a) (b)

(c) (d)

(e) (f)

Figure 18. The visualization of lump wave solution in different planes with parameters
used in the form ς1 = 1, ς2 = 1, ς4 = 2, ς5 = 1, ς7 = 1, ς8 = 2, ς10 = 1, ς11 = .5 and
(a, d) z = t = 1, (b, e) y = t = 1, (c, f ) y = z = 1.
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7.2. Interaction of M-M shaped with dark soliton

In this, we aim to present the interaction of two M-shaped solitons with the dark soliton solution.
For the achievement of our result we use the transformation in the following form

Υ = eς1 x+ς2y+ς3t++ς4t+ς5 + cos(ς6x + ς7y + ς8z + ς9t + ς10 + ς11)
+cosh(ς12x + ς13y + ς14t + ς15). (7.3)

Next, inserting Eq (7.3) into Eq (3.2), and equating the like powers and of the exponential,
trigonometric and hyperbolic functions along with the combinations of them, we obtained system
comprised of algebraic equations. On solving the algebraic system, we obtain following:

ς1 = 0, ς3 = −
ς2

(
ς3

11β + ς14

)
ς14

, ς4 = 0, ς6 = 0, ς8 = −
ς7

(
ς3

11β + ς14

)
ς14

, ς9 = 0, ς12 = −
ας11

β
,

ς13 =
ς11(α − β)

β
. (7.4)

Here the parameters ς14 and β should be greater than 0. Further, inserting the parameter values
Eq (7.4) into Eq (7.3), and then putting into Eqs (2.4) and (2.5) we obtained two exact solutions of the
interaction. The interaction of M-M and dark soliton solutions are presented in Figure 19.

(a) (b)

Figure 19. The visualization of M-M and dark soliton interaction with parameters used in
the form z = 1, t = 1, ς2 = .1, ς5 = 2, ς7 = .1, ς10 = 1, ς11 = 1, ς15 = 1,.

7.3. M and W shaped solitons

In this part of manuscript, we study the M-shaped and W-shaped soliton solutions. To reach the
goal, we use the transformation in the following form

Υ = cos(ς1x + ς3y + ς4z + ς5t + ς6) + cosh(ςzx + ς8y + ς9z + ς10t + ς11). (7.5)

On putting Eq (7.5) into Eq (3.2), and comparing the coefficients of same powers of the hyperbolic
and trigonometric functions along with the combinations of them, we obtained a system comprised of
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algebraic equations. On solving the algebraic system gives:

ς2 = −
ας1

β
, ς3 =

ς1(α − β)
β

, ς7 = −
ας6

β
, ς8 =

ς6(α − β)
β

. (7.6)

Here β , 0. Further, inserting the parameter values presented in Eq (7.6) into Eq (7.5), and then putting
into Eqs (2.4) and (2.5) we obtained two exact solutions of M and W shaped respectively, which are
simulated in Figure 20.

(a) (b)

Figure 20. The visualization of M and W shaped solitons with parameters used in the form
z = 1, t = 1, ς1 = 1, ς4 = 1, ς5 = 1, ς6 = 1, ς9 = 1, ς10 = 1, ς11 = 1, α = 1, β = .5.

8. Conclusions

In the context of nonlinear evolution processes, it is not uncommon for certain characteristics to
display unusual and remarkable properties. Our study has revealed that the displacement of solitons
exhibits asymmetric resonant phenomena before and after bifurcation in a system defined by gBSS.
This suggests that during interactions, the energy reflected by the amplitudes may shift. To explore
this, we employed the Hirota bilinear approach to study gBSS and obtained novel solutions by
considering different types of auxiliary functions. Our analysis includes the study of multi-solitons,
multiple bifurcations solitons, lump wave, M-shaped solitons, and the interaction of M-M shaped with
dark soliton. Additionally, we observed several novel hybrid solitons, such as tuning fork-shaped,
X-Y shaped, and double Y shaped solitons.
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