In this paper, under some conditions in the Banach space $ C ([0, \beta], \mathbb{R}) $, we establish the existence and uniqueness of the solution for the nonlinear integral equations involving the Riemann-Liouville fractional operator (RLFO). To establish the requirements for the existence and uniqueness of solutions, we apply the Leray-Schauder alternative and Banach's fixed point theorem. We analyze Hyers-Ulam-Rassias (H-U-R) and Hyers-Ulam (H-U) stability for the considered integral equations involving the RLFO in the space $ C([0, \beta], \mathbb{R}) $. Also, we propose an effective and efficient computational method based on Laguerre polynomials to get the approximate numerical solutions of integral equations involving the RLFO. Five examples are given to interpret the method.
Citation: Supriya Kumar Paul, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Dumitru Baleanu. An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator[J]. AIMS Mathematics, 2023, 8(8): 17448-17469. doi: 10.3934/math.2023891
In this paper, under some conditions in the Banach space $ C ([0, \beta], \mathbb{R}) $, we establish the existence and uniqueness of the solution for the nonlinear integral equations involving the Riemann-Liouville fractional operator (RLFO). To establish the requirements for the existence and uniqueness of solutions, we apply the Leray-Schauder alternative and Banach's fixed point theorem. We analyze Hyers-Ulam-Rassias (H-U-R) and Hyers-Ulam (H-U) stability for the considered integral equations involving the RLFO in the space $ C([0, \beta], \mathbb{R}) $. Also, we propose an effective and efficient computational method based on Laguerre polynomials to get the approximate numerical solutions of integral equations involving the RLFO. Five examples are given to interpret the method.
[1] | D. Baleanu, R. P. Agarwal, Fractional calculus in the sky, Adv. Differ. Equ., 2021 (2021), 117. https://doi.org/10.1186/s13662-021-03270-7 doi: 10.1186/s13662-021-03270-7 |
[2] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006. |
[3] | R. F. Rao, Z. Lin, X. Q. Ai, J. R. Wu, Synchronization of epidemic systems with Neumann boundary value under delayed impulse, Mathematics, 10 (2022), 2064. https://doi.org/10.3390/math10122064 doi: 10.3390/math10122064 |
[4] | H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Eng. Comput., 5 (2021), 135–166. http://doi.org/10.55579/jaec.202153.340 doi: 10.55579/jaec.202153.340 |
[5] | S. Micula, An iterative numerical method for fractional integral equations of the second kind, J. Comput. Appl. Math., 339 (2018), 124–133. https://doi.org/10.1016/j.cam.2017.12.006 doi: 10.1016/j.cam.2017.12.006 |
[6] | S. C. Shiralashetti, L. Lamani, A modern approach for solving nonlinear Volterra integral equations using Fibonacci wavelets, Electron. J. Math. Anal. Appl., 9 (2021), 88–98. |
[7] | M. R. Ali, M. M. Mousa, W. X. Ma, Solution of nonlinear Volterra integral equations with weakly singular kernel by using the HOBW method, Adv. Math. Phys., 2019 (2019), 1705651. https://doi.org/10.1155/2019/1705651 doi: 10.1155/2019/1705651 |
[8] | R. K. Bairwa, A. Kumar, D. Kumar, An efficient computation approach for Abel's integral equations of the second kind, Sci. Technol. Asia., 25 (2020), 85–94. https://doi.org/10.14456/scitechasia.2020.9 doi: 10.14456/scitechasia.2020.9 |
[9] | I. A. Bhat, L. N. Mishra, Numerical solutions of Volterra integral equations of third kind and its convergence analysis, Symmetry, 14 (2022), 2600. https://doi.org/10.3390/sym14122600 doi: 10.3390/sym14122600 |
[10] | S. Hamdan, N. Qatanani, A. Daraghmeh, Numerical techniques for solving linear Volterra fractional integral equation, J. Appl. Math., 2019 (2019), 5678103. https://doi.org/10.1155/2019/5678103 doi: 10.1155/2019/5678103 |
[11] | A. Akgül, Y. Khan, A novel simulation methodology of fractional order nuclear science model, Math. Methods Appl. Sci., 40 (2017), 6208–6219. https://doi.org/10.1002/mma.4437 doi: 10.1002/mma.4437 |
[12] | Y. Khan, M. A. Khan, Fatmawati, N. Faraz, A fractional Bank competition model in Caputo-Fabrizio derivative through Newton polynomial approach, Alex. Eng. J., 60 (2021), 711–718. https://doi.org/10.1016/j.aej.2020.10.003 doi: 10.1016/j.aej.2020.10.003 |
[13] | Y. Khan, K. Sayevand, M. Fardi, M. Ghasemi, A novel computing multi-parametric homotopy approach for system of linear and nonlinear Fredholm integral equations, Appl. Math. Comput., 249 (2014), 229–236. https://doi.org/10.1016/j.amc.2014.10.070 doi: 10.1016/j.amc.2014.10.070 |
[14] | Y. Khan, M. Fardi, A new efficient multi-parametric homotopy approach for two-dimensional Fredholm integral equations of the second kind, Hacet. J. Math. Stat., 44 (2015), 93–99. |
[15] | L. N. Mishra, V. K. Pathak, D. Baleanu, Approximation of solutions for nonlinear functional integral equations, AIMS Mathematics, 7 (2022), 17486–17506. https://doi.org/10.3934/math.2022964 doi: 10.3934/math.2022964 |
[16] | V. K. Pathak, L. N. Mishra, Application of fixed point theorem to solvability for non-linear fractional Hadamard functional integral equations, Mathematics, 10 (2022), 2400. https://doi.org/10.3390/math10142400 doi: 10.3390/math10142400 |
[17] | V. K. Pathak, L. N. Mishra, Existence of solution of Erdélyi-kober fractional integral equations using measure of non-compactness, Discontinuity Nonlinearity Complex., 12(3) (2023), 701–714. https://doi.org/10.5890/DNC.2023.09.015 doi: 10.5890/DNC.2023.09.015 |
[18] | V. K. Pathak, L. N. Mishra, V. N. Mishra, On the solvability of a class of nonlinear functional integral equations involving Erdélyi-Kober fractional operator, Math. Methods Appl. Sci., 2023. https://doi.org/10.1002/mma.9322 |
[19] | V. K. Pathak, L. N. Mishra, V. N. Mishra, D. Baleanu, On the solvability of mixed-type fractional-order non-linear functional integral equations in the Banach space $C(I)$, Fractal Fract., 6 (2022), 744. https://doi.org/10.3390/fractalfract6120744 doi: 10.3390/fractalfract6120744 |
[20] | Y. X. Zhao, L. Sh. Wang, Practical exponential stability of impulsive stochastic food chain system with time-varying delays, Mathematics, 11 (2023), 147. https://doi.org/10.3390/math11010147 doi: 10.3390/math11010147 |
[21] | Z. Ali, A. Zada, K. Shah, Ulam stability results for the solutions of nonlinear implicit fractional order differential equations, Hacet. J. Math. Stat., 48 (2019), 1092–1109. https://doi.org/10.15672/HJMS.2018.575 doi: 10.15672/HJMS.2018.575 |
[22] | N. P. N. Ngoc, N. V. Vinh, Ulam-Hyers-Rassias stability of a nonlinear stochastic Ito-Volterra integral equation, Differ. Equ. Appl., 10 (2018), 397–411. https://dx.doi.org/10.7153/dea-2018-10-27 doi: 10.7153/dea-2018-10-27 |
[23] | P. Kumam, A. Ali, K. Shah, R. A. Khan, Existence results and Hyers-Ulam stability to a class of nonlinear arbitrary order differential equations, J. Nonlinear Sci. Appl., 10 (2017), 2986–2997. http://doi.org/10.22436/jnsa.010.06.13 doi: 10.22436/jnsa.010.06.13 |
[24] | A. Reinfelds, S. Christian, Hyers-Ulam Stability of a nonlinear Volterra integral equation on time scales, In: Springer Proceedings in Mathematics and Statistics, 333 (2020). https://doi.org/10.1007/978-3-030-56323-3_10 |
[25] | J. R. Morales, E. M. Rojas, Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay, Int. J. Nonlinear Anal. Appl., 2 (2011), 1–6. |
[26] | M. Subramanian, P. Duraisamy, C. Kamaleshwari, B. Unyong, R. Vadivel, Existence and U-H stability results for nonlinear coupled fractional differential equations with boundary conditions involving Riemann-Liouville and Erdélyi-Kober integrals, Fractal Fract., 6 (2022), 266. https://doi.org/10.3390/fractalfract6050266 doi: 10.3390/fractalfract6050266 |
[27] | G. D. Li, Y. Zhang, Y. J. Guan, W. J. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. http://dx.doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303 |
[28] | L. P. Castro, R. C. Guerra, Hyers-Ulam-Rassias stability of Volterra integral equations within weighted spaces, Libertas Math., 33 (2013), 21–35. https://doi.org/10.14510/lm-ns.v33i2 doi: 10.14510/lm-ns.v33i2 |
[29] | M. A. Mannan, M. R. Rahman, H. Akter, N. Nahar, S. Mondal, A study of Banach fixed point theorem and it's applications, Am. J. Comput. Math., 11 (2021) 157–174. https://doi.org/10.4236/ajcm.2021.112011 |
[30] | Z. Elahi, G. Akram, S. S. Siddiqi, Laguerre approach for solving system of linear Fredholm integro-differential equations, Math. Sci., 12 (2018), 185–195. https://doi.org/10.1007/s40096-018-0258-0 doi: 10.1007/s40096-018-0258-0 |
[31] | M. Gülsu, B. Gürbüz, Y. Öztürk, M. Sezer, Laguerre polynomial approach for solving linear delay difference equations, Appl. Math. Comput., 217 (2011), 6765–6776. https://doi.org/10.1016/j.amc.2011.01.112 doi: 10.1016/j.amc.2011.01.112 |
[32] | T. Kim, Identities involving Laguerre polynomials derived from umbral calculus, Russ. J. Math. Phys., 21 (2014), 36–45. https://doi.org/10.1134/S1061920814010038 doi: 10.1134/S1061920814010038 |
[33] | T. Kim, D. S. Kim, K. W. Hwang, J. J. Seo, Some identities of Laguerre polynomials arising from differential equations, Adv. Differ. Equ., 2016 (2016), 159. https://doi.org/10.1186/s13662-016-0896-1 doi: 10.1186/s13662-016-0896-1 |
[34] | R. K. Pandey, O. P. Singh, V. K. Singh, Efficient algorithms to solve singular integral equations of Abel type, Comput. Math. Appl., 57 (2009), 664–676. https://doi.org/10.1016/j.camwa.2008.10.085 doi: 10.1016/j.camwa.2008.10.085 |
[35] | K. K. Singh, R. K. Pandey, B. N. Mandal, N. Dubey, An analytical method for solving integral equations of Abel type, Procedia Eng., 38 (2012), 2726–2738. https://doi.org/10.1016/j.proeng.2012.06.319 doi: 10.1016/j.proeng.2012.06.319 |