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1. Introduction

Many physical issues in science and technology that were previously solved by using the concepts
of partial and ordinary differential equations can now be solved using more effective methods of
integral equation theory. The generalization of differential and integral to an arbitrary order that isn’t
an integer is represented by fractional derivatives and fractional integrals respectively. In theoretical
mechanics, applied mathematics, and mathematical physics, the theory of integral equations is a very
useful tool [1–4]. In the recent decade, several numerical techniques have been established by various
researchers to obtain approximate solutions of integral equations with integer or fractional order. For
instance, an iterative numerical method based on Picard iteration has been presented by Micula [5]
for linear fractional integral equations of second kind. Shiralashetti et al. [6] proposed a technique
based on Fibonacci wavelets to solve nonlinear Volterra integral equations. Ali et al. [7] introduced a
method that utilizes the hybrid orthonormal Bernstein and block-pulse functions wavelet method for
the nonlinear Volterra integral equations with a weakly singular kernel. Bairwa et al. [8] presented a
method named as q-homotopy analysis transform merthod for Abel’s integral equations of the second
kind. Bhat et al. [9] presented a method for the numerical solution of the third kind of Volterra integral
equations based on Lagrange polynomial, modified Lagrange polynomial, and barycentric Lagrange
polynomial. Hamdan et al. introduced the product integration and Haar Wavelet approaches for
approximate solutions of the fractional Volterra integral equations of the second type [10]. Akgül
et al. [11] proposed a novel methodology based on reproducing kernels for solving the fractional order
integro-differential transport model for a nuclear reactor. Khan et al. [12] investigated a competition
model in the fractional derivative of the Caputo-Fabrizio type via Newton polynomial. A novel multi-
parametric homotopy method for systems of linear and nonlinear Fredholm integral equations has been
presented by Khan et al. [13]. Also, nice results were obtained for two-dimensional Fredholm integral
equations via a multi-parametric homotopy approach [14]. More recent works on the solvability of
integral equations have been introduced in references [15–19].

Regarding the other perspective, stability is a significant factor for numerical applications and
may be required to compare the outcome and performance of numerical methods. Both differential
and integral equations have undergone several types of stability analysis. Recently, H-U-R and H-U
stability have increasingly attained the interest of researchers. For instance, in the vast of practical
problem scenarios, Lyapunov stability has been explored. Additionally, for a lot of topics, Mittag-
Leffler and exponential type stabilities have been developed. Practical exponential stability of an
impulsive stochastic food chain system with time-varying delays has been studied [20]. Ali et al. [21]
studied on the Ulam-Hyers stability and the Ulam-Hyers-Rassias stability for nonlinear implicit
fractional order differential equations. The Ulam-Hyers-Rassias stability of a nonlinear stochastic
integral equation has been studied by Ngoc et al. [22]. Kumam et al. [23] developed some conditions
on existence results and Hyers-Ulam stability for a class of nonlinear fractional order differential
equations. Reinfelds et al. [24] presented the Hyers-Ulam stability of a nonlinear Volterra integral
equation on time scales. Morales et al. [25] studied Hyers-Ulam and Hyers-Ulam-Rassias stability
for nonlinear integral equations with delay. Subramanian et al. [26] studied the existence and U-
H stability results for nonlinear coupled fractional differential equations with boundary conditions
involving Riemann-Liouville and Erdélyi-Kober integrals. Li et al. [27] studied the Ulam stability of
a fractional differential equation with multi-point boundary conditions and non-instantaneous integral
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impulse. Some examples and H-U-R stability for Volterra integral equations within weighted spaces
have been presented by Castro et al. [28].

The existence requirements of the solutions to various types of integral equations are crucial
elements to examine. We can use these criteria to determine under what conditions the solution to
the problem exists. The fixed point approach is significant in this sense.

In this paper, our discussion will be on the nonlinear integral equation involving the Riemann-
Liouville fractional operator, i.e.,

ζ(y) = N(y) +
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ, y ∈ [0, β], (1.1)

where λ > 0, 0 < β < ∞, the functions H : C([0, β],R) → R and N , ψ, ξ : [0, β] → R are all
continuous functions.

Sometimes, it is challenging to determine the exact solution to this equation explicitly. Thus, the
current article’s goal is to use the Laguerre polynomials to obtain approximate numerical solutions for
nonlinear integral equations involving the RLFO. Remarkably, nonlinearity and singularity make the
numerical procedure more challenging, so this is the strong motivation to study the numerical solution
of Eq (1.1). In order to achieve this goal, we provide some conditions for the existence and uniqueness
of solutions as well as a numerical scheme to solve the Eq (1.1). Moreover, we establish the conditions
of Hyers-Ulam and Hyers-Ulam-Rassias stability for the considered Eq (1.1).

This paper is structured as follows: Section 2 contains some notations, and background information.
In Section 3, we provides existence, uniqueness and stability criteria to the solutions of the Eq (1.1).
The required method for solving the Eq (1.1) to obtain the approximate numerical solutions is presented
in Section 4. In Section 5, accuracy of solutions of the proposed method is discussed. Some numerical
experiments and graphs are shown in Section 6 to illustrate the effectiveness of the proposed technique.
Finally, conclusions and future work are given in Section 7.

2. Notations, definitions and auxiliary facts

In this section, we provide a few notations and background information which are useful for the
presentation of our main results. Let R be the set of all real numbers and let W = C([0, β],R) be the
space of all continuous functions ζ : [0, β] → R, where 0 < β < ∞. Then (W, ‖.‖) is a Banach space
with the norm ‖ζ‖ = sup{|ζ(y)| : y ∈ [0, β]}.

Definition 2.1. [2] The Riemann-Liouville fractional integral of order λ > 0 of a function ζ(y) is
described as

λJ
y
0ζ(y) =

1
Γ(λ)

∫ y

0
(y − µ)λ−1 ζ(µ)dµ, (2.1)

where Γ(λ) =
∫ ∞

0
e−xxλ−1dx, provided that the RHS is point-wise defined on [0,∞).

Definition 2.2. If for each function ζ(y) ∈ W satisfying∣∣∣ζ(y) − N(y) −
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣ ≤ v(y),

where v(y) is a non-negative function, there exists a solution ζ̂ ∈ W of Eq (1.1) and a constant Λ > 0
independent of ζ and ζ̂ with the property |ζ(y) − ζ̂(y)| ≤ Λv(y), for all y, then we say that the Eq (1.1)
has the H-U-R stability with respect to v(y).
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Definition 2.3. In particular, when v(y) is a constant function in the above inequalities of Definition 2.2,
we say that the Eq (1.1) has the H-U stability.

Theorem 2.1. (Banach’s fixed point theorem [29]). Let W be a Banach space. If a mappingM : W →
W is a contraction, thenM has a unique fixed point in W.

Theorem 2.2. (Leray-Schauder alternative [26]). Let M : E → E be a completely continuous
operator. Let Ω = {y ∈ E : y = ηM(y), for some 0 < η < 1}. Then, either the set Ω is unbounded orM
has at least one fixed point.

2.1. Laguerre polynomials

The Laguerre polynomials Ln(y) (n ≥ 0), ( [30–33]) are defined by the generating function

e−
yσ

1−σ

1 − σ
=

∞∑
n=0

Ln(y)σn. (2.2)

Indeed, u = Ln(y) is a solution of the following differential equation

yu′′ + (1 − y)u′ + nu = 0.

From Eq (2.2),
∞∑

n=0

Ln(y)σn =
e−

yσ
1−σ

1 − σ

=

∞∑
q=0

(−1)qyqσq

q!
(1 − σ)−q−1

=

∞∑
n=0

 n∑
q=0

(−1)q
(

n
q

)
yq

q!

σn. (2.3)

Thus by Eq (2.3), we get

Ln(y) =

n∑
q=0

(−1)q
(

n
q

)
yq

q!
, (n ≥ 0). (2.4)

Moreover, one can also define the Laguerre polynomials by the recurrence relation as follows:

L0(y) = 1, L1(y) = 1 − y,

Ln+1(y) =
(2n + 1 − y)Ln(y) − nLn−1(y)

n + 1
, n ≥ 1.

The first six Laguerre polynomials are given below:
L0(y) = 1,
L1(y) = 1 − y,
L2(y) = 1

2 (2 − 4y + y2),
L3(y) = 1

6 (6 − 18y + 9y2 − y3),
L4(y) = 1

24 (24 − 96y + 72y2 − 16y3 + y4),
L5(y) = 1

120 (120 − 600y + 600y2 − 200y3 + 25y4 − y5).
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2.2. Approximation function and matrix representation for Laguerre polynomials

To determine the approximate numerical solutions of Eq (1.1), assume that the function Jn(y) is
approximated by the Laguerre polynomials as follows:

Jn(y) = s0L0(y) + s1L1(y) + ...... + snLn(y) =

n∑
m=0

(smLm(y)), 0 ≤ y ≤ β, (2.5)

where the function {Lm(y)}nm=0 denotes the basis of the Laguerre polynomials, defined in Eq (2.4). We
have to determine the unknown Laguerre coefficients sm, (m = 0, 1, ..., n).

Now rewriting Eq (2.5) as,

Jn(y) =
[
L0(y) L1(y) . . . Ln(y)

]
·


s0

s1
...

sn

 · (2.6)

Again, Eq (2.6) can be converted as,

Jn(y) =
[
1 y y2 . . . yn

]
·



σ00 σ01 σ02 . . . σ0n

0 σ11 σ12 . . . σ1n

0 0 σ22 . . . σ2n
...

...
...

. . .
...

0 0 0 . . . σnn


·



s0

s1

s2
...

sn


, (2.7)

where {σmm}
n
m=0 are the parameters of the power basis, used to obtain the Laguerre polynomials, this

matrix is upper triangular and is certainly invertible.
Now for n = 1, 2 and 3, the operational matrices are shown in the Eqs (2.8), (2.9) and (2.10)

respectively as follows:

J1(y) =
[
1 y

]
·

[
1 1
0 −1

]
·

[
s0

s1

]
, (2.8)

J2(y) =
[
1 y y2

]
·


1 1 1
0 −1 −2
0 0 1/2

 ·

s0

s1

s2

 , (2.9)

J3(y) =
[
1 y y2 y3

]
·


1 1 1 1
0 −1 −2 −3
0 0 1/2 3/2
0 0 0 −1/6

 ·

s0

s1

s2

s3

 . (2.10)

3. Qualitative analysis

This section covers the existence and uniqueness of solutions of the Eq (1.1) via fixed point
approach, as well as the H-U-R and H-U stability theorems are also given for the Eq (1.1).

Theorem 3.1. We consider the assumptions for Eq (1.1) as follows:
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(A1) There exist constants B1 > 0, B2 > 0 and B3 > 0 such that

|N(y)| ≤ B1, |ψ(y)| ≤ B2, |ξ(y)| ≤ B3, for all y ∈ [0, β].

(A2) There exists a constant B > 0 such that |H(ζ1) −H(ζ2)| ≤ B|ζ1 − ζ2|, for all ζ1, ζ2 ∈ W.
(A3) There exists a constant H > 0 such that |H(ζ(µ))| ≤ H, for all ζ(µ) ∈ W.

Then under assumptions (A1) − (A3), Eq (1.1) has at least one solution defined on [0, β].

Proof. Let us define the operatorM : W → W as

M(ζ(y)) = N(y) +
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ. (3.1)

We will prove this result in four steps as follows:

Step 1. We need to prove thatM is continuous.
Let {ζn} be a sequence in W and ζ ∈ W such that limn→∞ ‖ζn − ζ‖ = 0.
Then for each y ∈ [0, β],∣∣∣M(ζn(y)) −M(ζ(y))

∣∣∣ =
∣∣∣ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζn(µ))dµ

−
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣
≤

B2B3

Γ(λ)

∫ y

0
(y − µ)λ−1

∣∣∣H(ζn(µ)) −H(ζ(µ))
∣∣∣dµ

≤
B2B3B
Γ(λ)

∫ y

0
(y − µ)λ−1

∣∣∣ζn(µ) − ζ(µ)
∣∣∣dµ

≤
B2B3B
Γ(λ)

∫ y

0
(y − µ)λ−1 dµ‖ζn − ζ‖,

i.e.,
∣∣∣M(ζn(y)) −M(ζ(y))

∣∣∣ ≤ B2B3Bβλ

Γ(λ + 1)
‖ζn − ζ‖,

which implies that ‖M(ζn) −M(ζ)‖ → 0 as n→ ∞. Hence,M is continuous.

Step 2. Under the mappingM, bounded sets of W are mapped into bounded sets of W.
Let Bε ⊂ W be bounded. Now, for ζ ∈ Bε and y ∈ [0, β],

|M(ζ(y))| =
∣∣∣∣∣N(y) +

ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣∣∣
≤

∣∣∣∣∣N(y)
∣∣∣∣∣ +

∣∣∣∣∣ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣∣∣
≤ B1 +

B2B3H
Γ(λ)

∫ y

0
(y − µ)λ−1 dµ

≤ B1 +
B2B3Hβλ

Γ(λ + 1)
< ∞.
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Step 3. M(Bε) is equicontinuous.

Let ζ ∈ Bε and y1, y2 ∈ [0, β] with y1 < y2, then

|M(ζ(y2)) −M(ζ(y1))| =
∣∣∣∣∣N(y2) +

ψ(y2)
Γ(λ)

∫ y2

0
(y2 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

− N(y1) −
ψ(y1)
Γ(λ)

∫ y1

0
(y1 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣∣∣
≤

∣∣∣N(y2) − N(y1)
∣∣∣

+

∣∣∣∣∣ψ(y2)
Γ(λ)

∫ y2

0
(y2 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

−
ψ(y1)
Γ(λ)

∫ y1

0
(y1 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣∣∣
≤

∣∣∣N(y2) − N(y1)
∣∣∣

+

∣∣∣∣∣ψ(y2) + ψ(y1) − ψ(y1)
Γ(λ)

∫ y2

0
(y2 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

−
ψ(y1)
Γ(λ)

∫ y1

0
(y1 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣∣∣
≤

∣∣∣N(y2) − N(y1)
∣∣∣

+
|ψ(y2) − ψ(y1)|

Γ(λ)

∣∣∣∣∣ ∫ y2

0
(y2 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣∣∣
+

∣∣∣∣∣ψ(y1)
Γ(λ)

∫ y2

0
(y2 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

−
ψ(y1)
Γ(λ)

∫ y1

0
(y1 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣∣∣
≤

∣∣∣N(y2) − N(y1)
∣∣∣ +
|ψ(y2) − ψ(y1)|B3H

Γ(λ)

∫ y2

0
(y2 − µ)λ−1 dµ

+

∣∣∣∣∣ψ(y1)
Γ(λ)

∫ y1

0
(y2 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

+
ψ(y1)
Γ(λ)

∫ y2

y1

(y2 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

−
ψ(y1)
Γ(λ)

∫ y1

0
(y1 − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣∣∣
≤

∣∣∣N(y2) − N(y1)
∣∣∣ +
|ψ(y2) − ψ(y1)|B3Hβλ

Γ(λ + 1)

+

∣∣∣∣∣ψ(y1)
Γ(λ)

∫ y1

0

(
(y2 − µ)λ−1

− (y1 − µ)λ−1
)
ξ(µ)H(ζ(µ))dµ

∣∣∣∣∣
+

∣∣∣∣∣ψ(y1)
Γ(λ)

∫ y2

y1

(y2 − µ)λ−1 ξ(µ)H(ζ(µ))dµ
∣∣∣∣∣

≤
∣∣∣N(y2) − N(y1)

∣∣∣ +
|ψ(y2) − ψ(y1)|B3Hβλ

Γ(λ + 1)
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+
B2B3H
Γ(λ)

∫ y1

0

∣∣∣ (y2 − µ)λ−1
− (y1 − µ)λ−1

∣∣∣dµ
+

B2B3H
Γ(λ)

∫ y2

y1

(y2 − µ)λ−1 dµ,

i.e.,

|M(ζ(y2)) −M(ζ(y1))| ≤
∣∣∣N(y2) − N(y1)

∣∣∣ +
|ψ(y2) − ψ(y1)|B3Hβλ

Γ(λ + 1)

+
B2B3H
Γ(λ)

∫ y1

0

∣∣∣ (y2 − µ)λ−1
− (y1 − µ)λ−1

∣∣∣dµ
+

B2B3H
Γ(λ + 1)

(y2 − y1)λ . (3.2)

Now, it can be observed that

∣∣∣ (y2 − µ)λ−1
− (y1 − µ)λ−1

∣∣∣ =


(y2 − µ)λ−1

− (y1 − µ)λ−1 , λ − 1 > 0,
0, λ − 1 = 0,
(y1 − µ)λ−1

− (y2 − µ)λ−1 , λ − 1 < 0.

(3.3)

Then, ∫ y1

0

∣∣∣ (y2 − µ)λ−1
− (y1 − µ)λ−1

∣∣∣dµ =


1
λ

[
yλ2 − yλ1 − (y2 − y1)λ

]
, λ − 1 > 0,

0, λ − 1 = 0,
1
λ

[
(y2 − y1)λ + yλ1 − yλ2

]
, λ − 1 < 0.

(3.4)

Thus, it follows from (3.2) and Eq (3.4) that, |M(ζ(y2)) −M(ζ(y1))| → 0 as y2 → y1. So,M(Bε) is
equicontinuous.

Hence, combining Step 1, Step 2 and Step 3, the operator M is completely continuous by the
consequence of Arzelà-Ascoli theorem.

Step 4. Let Ω = {ζ ∈ W : ζ = ηM(ζ), for some 0 < η < 1}.We have to prove that the set Ω is bounded.
Let ζ ∈ Ω, which implies that ζ = ηM(ζ), for some 0 < η < 1.

Now for y ∈ [0, β], we have

|ζ(y)| = |ηM(ζ)|

≤

∣∣∣∣∣N(y)
∣∣∣∣∣ +

∣∣∣∣∣ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣∣∣
≤ B1 +

B2B3H
Γ(λ)

∫ y

0
(y − µ)λ−1 dµ

≤ B1 +
B2B3Hβλ

Γ(λ + 1)
< ∞.

This implies that the set Ω is bounded.
Thus,M has at least one fixed point according to the Leray-Schauder alternative, which is a solution

of Eq (1.1) defined on [0, β]. �

Theorem 3.2. We consider the assumptions for Eq (1.1) as follows:
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(A1) There exist constants B2 > 0 and B3 > 0 such that

|ψ(y)| ≤ B2, |ξ(y)| ≤ B3.

(A2) There exists a constant B with 0 < B < Γ(λ+1)
B2B3βλ

such that
|H(ζ1) −H(ζ2)| ≤ B|ζ1 − ζ2|, for all ζ1, ζ2 ∈ W.

Then under assumptions (A1) and (A2), Eq (1.1) has a unique solution defined on [0, β].

Proof. Let us define the operatorM : W → W as

M(ζ(y)) = N(y) +
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ. (3.5)

Now we have to prove thatM is a contraction.
Let ζ1, ζ2 ∈ W, then for all y ∈ [0, β],

∣∣∣M(ζ1(y)) −M(ζ2(y))
∣∣∣ =

∣∣∣∣∣ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ1(µ))dµ

−
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ2(µ))dµ

∣∣∣∣∣
≤

B2B3

Γ(λ)

∫ y

0
(y − µ)λ−1

|H(ζ1(µ)) −H(ζ2(µ))|dµ

≤
B2B3B
Γ(λ)

∫ y

0
(y − µ)λ−1

|ζ1(µ) − ζ2(µ)|dµ

≤
B2B3Bβλ

Γ(λ + 1)
‖ζ1 − ζ2‖.

Thus, ‖M(ζ1(y)) −M(ζ2(y))‖ ≤ κ‖ζ1 − ζ2‖, where κ =
B2B3Bβλ

Γ(λ+1) .

By the assumption of B, κ =
B2B3Bβλ

Γ(λ+1) < 1. So M is a contraction mapping. As a result, M has a
unique fixed point, according to the Banach’s fixed point theorem and hence, Eq (1.1) has a unique
solution. �

Theorem 3.3. Assume that, the Eq (1.1) satisfying all assumptions of Theorem 3.2. Let ζ(y) ∈ W is
such that satisfies the inequality

∣∣∣ζ(y) − N(y) −
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣ ≤ v(y),

where v(y) is a non-negative function. Then the Eq (1.1) has the H-U-R stability with respect to v(y).

Proof. By the Theorem 3.2, ∃ a unique solution ζ̂ ∈ W of Eq (1.1).
Let ζ(y) ∈ W such that

∣∣∣ζ(y) − N(y) −
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣ ≤ v(y).
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According to Definition 2.2, we have to show that ∃ a constant Λ > 0 independent of ζ and ζ̂ such
that, |ζ(y) − ζ̂(y)| ≤ Λv(y)|. Now, for all y ∈ [0, β],

|ζ(y) − ζ̂(y)| =
∣∣∣∣∣ζ(y) − N(y) −

ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ̂(µ))dµ

∣∣∣∣∣
=

∣∣∣∣∣ζ(y) − N(y) −
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

+
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

−
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ̂(µ))dµ

∣∣∣∣∣
≤

∣∣∣∣∣ζ(y) − N(y) −
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣∣∣
+

∣∣∣∣∣ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

−
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ̂(µ))dµ

∣∣∣∣∣
≤ v(y) +

|ψ(y)|
Γ(λ)

∫ y

0
(y − µ)λ−1

∣∣∣ξ(µ)
(
H(ζ(µ)) −H(ζ̂(µ))

) ∣∣∣dµ
≤ v(y) +

B2B3B
Γ(λ)

∫ y

0
(y − µ)λ−1 dµ‖ζ − ζ̂‖

≤ v(y) +
B2B3Bβλ

Γ(λ + 1)
‖ζ − ζ̂‖.

Thus, |ζ(y)− ζ̂(y)| ≤ ‖ζ − ζ̂‖ ≤ v(y) +
B2B3Bβλ

Γ(λ+1) ‖ζ − ζ̂‖, which implies that, |ζ(y)− ζ̂(y)| ≤ ‖ζ − ζ̂‖ ≤ Λv(y),

where Λ = 1
1−κ > 0, as κ =

B2B3Bβλ

Γ(λ+1) < 1, by the assumption. Hence the Eq (1.1) has the H-U-R stability
with respect to v(y). �

Theorem 3.4. Assume that, the Eq (1.1) satisfying all assumptions of Theorem 3.2. Let ζ(y) ∈ W and
ε > 0 such that satisfies ∣∣∣∣∣ζ(y) − N(y) −

ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)ζ(µ) dµ

∣∣∣∣∣ ≤ ε,
then the Eq (1.1) has the H-U stability with respect to ε.

Proof. We can prove this theorem in similar way by taking v(y) = ε, in the Theorem 3.3, where
ε > 0. �

4. Computational method

In this section, we will use the Laguerre polynomials to determine the approximate numerical
solutions for the Eq (1.1).

Rewriting the Eq (1.1) as follows:

ζ(y) = N(y) +
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ. (4.1)

AIMS Mathematics Volume 8, Issue 8, 17448–17469.



17458

Now to approximate the unknown function in Eq (4.1), by using Eq (2.5), let

ζ(y) � Jn(y) =

n∑
m=0

(smLm(y)). (4.2)

Putting the Eq (4.2) into the Eq (4.1), we get

n∑
m=0

(smLm(y)) = N(y) +
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H

 n∑
m=0

smLm(µ)

 dµ. (4.3)

Therefore, the Eq (4.3) becomes by using Eq (2.6) as follows:

[
L0(y) L1(y) . . . Ln(y)

]
·


s0

s1
...

sn


= N(y) +

ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H


[
L0(µ) L1(µ) . . . Ln(µ)

]
·


s0

s1
...

sn


 dµ.

(4.4)

Again, by applying Eq (2.7), the Eq (4.4) becomes as follows:

[
1 y . . . yn

]
·


σ00 σ01 . . . σ0n

0 σ11 . . . σ1n
...

...
. . .

...

0 0 . . . σnn

 ·

s0

s1
...

sn


= N(y) +

ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H


[
1 µ . . . µn

]
·


σ00 σ01 . . . σ0n

0 σ11 . . . σ1n
...

...
. . .

...

0 0 . . . σnn

 ·

s0

s1
...

sn


 dµ.

(4.5)

Thus, after finding the integration of the Eq (4.5) we have to calculate the values of unknown constants
sm (m = 0, 1, 2, . . . , n), for this purpose we need (n+1) equations. Now by choosing yi (i = 0, 1, 2, . . . , n)
such that 0 ≤ yi ≤ β, a system of (n + 1) equations can be obtained. After solving these equations the
unknown coefficients (s0, s1, . . . , sn) are uniquely determined. Therefore, the approximate numerical
solutions can be obtained by substituting the values of the coefficients into Eq (2.5).

4.1. Algorithm for solutions

In this part, all steps of the proposed algorithm to find the approximate numerical solutions of
Eq (1.1) are summarized as follows:
Step 1. Choose a value n for Jn(y) and then obtain the corresponding Laguerre polynomials

Ln(y) =

n∑
q=0

(−1)q
(

n
q

)
yq

q!
, for n = 0, 1, 2, 3, . . . (4.6)
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Step 2. Now we have to use Eqs (1.1), (2.7) and (4.2).

Step 3. Substitute Eq (4.2) into Eq (1.1) and use Eq (2.7).

Step 4. Compute all of the integration obtained in Step 3.

Step 5. Compute (s0, s1, s2, . . . , sn), by choosing yi ∈ [0, β], where i = 0, 1, 2, . . . , n.

Step 6. Substitute the values of (s0, s1, s2, . . . , sn) into the Eq (2.5) to get the approximate solution.

5. Accuracy of solutions

Since Eq (4.3) and Eq (2.5) have the following forms given by Eq (5.1) and Eq (5.2) respectively:

n∑
m=0

(smLm(y)) = N(y) +
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H

 n∑
m=0

smLm(µ)

 dµ, (5.1)

Jn(y) = s0L0(y) + s1L1(y) + ...... + snLn(y) =

n∑
m=0

(smLm(y)), (5.2)

and the unknown coefficients (s0, s1, . . . , sn) were determined by using Eq (4.5). Also, from Eq (4.2),
we have

ζ(y) � Jn(y) =

n∑
m=0

(smLm(y)), (5.3)

thus, Eq (5.3) is the unique approximate solution of Eq (5.1), and is substituted into Eq (5.1).
Now, assume that y = yk ∈ [0, β], k = 0, 1, 2, . . . , then

Ω(yk) =

∣∣∣∣∣ n∑
m=0

(smLm(yk)) − N(yk) −
ψ(yk)
Γ(λ)

∫ yk

0
(yk − µ)λ−1 ξ(µ)H

 n∑
m=0

smLm(µ)

 dµ
∣∣∣∣∣ � 0,

and Ω(yk) ≤ 10−Np , where Np is a positive integer. If max 10−Np = 10−N (N is a positive integer)
prescribed, then n is increased until the difference Ω(yk) at each of the points becomes smaller than the
prescribed 10−N . For max 10−Np , 10−N , the error can be estimated by the following function:

Ωn(y) =

n∑
m=0

(smLm(y)) − N(y) −
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H

 n∑
m=0

smLm(µ)

 dµ.

If Ωn(y)→ 0, for sufficiently large n, then the error decreases.

6. Numerical applications and discussions

In this section, five examples have been provided to demonstrate the efficiency and accuracy of the
presented technique. The absolute errors are the values of |ζ(y)− Jn(y)| at selected points, where ζ(y) is
the exact solution and the approximate solution is Jn(y). Also, the convergence of solutions have been
shown in the graphs.
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Example 6.1. [34, 35]. Consider the example as follows:

ζ(y) = y +
4
3

y
3
2 −

∫ y

0
(y − µ)−

1
2 ζ(µ)dµ, 0 ≤ y ≤ 1, (6.1)

where the exact solution is ζ(y) = y.

We can write this Eq (6.1) in the form of Eq (1.1) as,

ζ(y) = y +
4
3

y
3
2 +

ψ(y)
Γ( 1

2 )

∫ y

0
(y − µ)−

1
2 ξ(µ)H(ζ(µ))dµ, y ∈ [0, 1]. (6.2)

Then by comparing with Eq (1.1), we get N(y) = y + 4
3y

3
2 , ψ(y) = −Γ(1

2 ), λ = 1
2 , β = 1, ξ(µ) = 1 and

H(ζ(µ)) = ζ(µ). It’s very easy to show that Eq (6.1) satisfies all assumption of Theorem 3.1. Hence,
by Theorem 3.1, Eq (6.1) has at least one solution defined on [0, 1].

Now applying the algorithm as, if n = 1, then by using Eq (2.8) and Eq (4.2) we have

[
1 y

]
·

[
1 1
0 −1

]
·

[
s0

s1

]
= y +

4
3

y
3
2 −

∫ y

0
(y − µ)−

1
2

([
1 µ

]
·

[
1 1
0 −1

]
·

[
s0

s1

])
dµ,

this can be written as,

s0 + (1 − y)s1 = y +
4
3

y
3
2 −

∫ y

0
(y − µ)−

1
2 (s0 + (1 − µ)s1) dµ

= y +
4
3

y
3
2 − s0

∫ y

0
(y − µ)−

1
2 dµ − s1

∫ y

0
(y − µ)−

1
2 (1 − µ)dµ.

(6.3)

Therefore from Eq (6.3), after computing all integrations, we choose y0 = 0.1, y1 = 0.2 in the
interval [0, 1], and solving the algebraic system in MATLAB program, we get s0 = 1 and s1 = −1.Thus,
the approximate solution for the Eq (6.1) is as follows:

J1(y) = (1)L0(y) + (−1)L1(y) = y.

This shows that the approximate solution of Eq (6.1) is same as the exact solution for n = 1, by this
proposed method.

In [34], the maximum absolute error obtained for n = 18, nearly 5.0e − 03. In [35], the maximum
absolute error obtained for n = 14, nearly 1.0e − 10. Therefore, our proposed method provides better
result than the method given in [34, 35]. The comparison of the approximate solution with the exact
solution for the presented method is shown in Figure 1.
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Figure 1. Graphical representation of approximate and exact solutions of Example 6.1.

Also, for Eq (6.1), we see that B2 = Γ(1
2 ), B3 = 1, β = 1, λ = 1

2 , and for all ζ1, ζ2 ∈ W,
|H(ζ1) − H(ζ2)| = |ζ1 − ζ2|, which implies B = 1. Now, Γ(λ+1)

B2B3βλ
= 0.5. So, the relation 0 < B < Γ(λ+1)

B2B3βλ

does not hold. Therefore, we can’t say the H-U-R stability in this instance on the whole interval [0, 1].
Now we will check the H-U-R stability on the subinterval [0, 0.2], which contains the collocation

points y0 = 0.1 and y1 = 0.2. Clearly, in this case, β = 0.2. Then, Γ(λ+1)
B2B3βλ

≈ 1.1180. So, the relation 0 <
B < Γ(λ+1)

B2B3βλ
holds for β = 0.2. Thus, all conditions of Theorem 3.2 are satisfied on the interval [0, 0.2].

Now, if we simply choose ζ(y) = 0, then∣∣∣ζ(y) − N(y) −
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣ =
∣∣∣0 − y −

4
3

y
3
2 + 0

∣∣∣
≤

7y
3

= v(y), for all y ∈ [0, 0.2].

Therefore, by Theorem 3.3, we obviously have

|ζ(y) − J1(y)| = |0 − y| ≤ Λ
7y
3

= 9.4721v(y), for all y ∈ [0, 0.2].

Hence, we conclude that the Eq (6.1) has the H-U-R stability on [0, 0.2] with respect to v(y) =
7y
3 .

Example 6.2. [5] Consider the example as follows:

ζ(y) = yΓ(2/3) −
1

40
y8/3 +

1
27 · Γ(2/3)

∫ y

0
µ (y − µ)−1/3 ζ(µ)dµ, y ∈ [0, 1], (6.4)

where the exact solution is ζ(y) = yΓ(2/3).
Comparing with Eq (1.1), we get N(y) = yΓ(2/3) − 1

40y8/3, ψ(y) = 1
27 , ξ(µ) = µ, H(ζ(µ)) = ζ(µ),

λ = 2
3 , and β = 1. It’s very easy to show that Eq (6.4) satisfies all assumption of Theorem 3.1. Hence,

by Theorem 3.1, Eq (6.4) has at least one solution defined on [0, 1]. Now to find the approximate
numerical solution we applying the proposed algorithm for n = 1, and by choosing y0 = 0.1, y1 = 0.2
in the given interval [0, 1], then computing all steps, we get the approximate solution of Eq (6.4) as
follows:

ζ(y) � J1 = (1.3541)L0(y) + (−1.3541)L1(y).
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Table 1 shows the comparison of approximate, exact solutions and absolute errors obtained for
n = 1. By using the proposed method, the maximum absolute error obtained for n = 1 is 1.7939e− 05.
In [5], the maximum absolute error obtained for n = 5 (5 iterations) is 2.871932e − 05.

Thus, the proposed method described in Section 4, provides best approximation for less number of
iterations compared to the method given in [5]. Moreover, Figure 2 shows the graph of approximate
and exact solutions for n = 1.
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Figure 2. Graphical representation of approximate and exact solutions of Example 6.2.

Table 1. Computational Results of Example 6.2, for n = 1.

y Exact solution Approximate solution Absolute error
0 0 0 0
0.1 0.1354 0.1354 1.7939e-06
0.2 0.2708 0.2708 3.5879e-06
0.3 0.4062 0.4062 5.3818e-06
0.4 0.5416 0.5416 7.1758e-06
0.5 0.6771 0.6771 8.9697e-06
0.6 0.8125 0.8125 1.0764e-05
0.7 0.9479 0.9479 1.2558e-05
0.8 1.0833 1.0833 1.4352e-05
0.9 1.2187 1.2187 1.6145e-05
1 1.3541 1.3541 1.7939e-05

Also, for Eq (6.4), we see that B2 = 1
27 , B3 = 1, β = 1, λ = 2

3 , and for all ζ1, ζ2 ∈ W, |H(ζ1) −
H(ζ2)| = |ζ1 − ζ2|, which implies B = 1. Now, Γ(λ+1)

B2B3βλ
≈ 24.3741. So, the relation 0 < B < Γ(λ+1)

B2B3βλ
holds.

Thus, all conditions of Theorem 3.2 are satisfied on the interval [0, 1]. Now, if we simply choose
ζ(y) = 0, then

∣∣∣ζ(y) − N(y) −
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣ =
∣∣∣0 − yΓ(2/3) +

1
40

y8/3 − 0
∣∣∣

≤ 1.3291 = ε, for all y ∈ [0, 1].
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Then, by Theorem 3.4, we obviously have

|ζ(y) − J1(y)| = |0 − 1.3541L0(y) + 1.3541L1(y)|
= |−1.3541y| ≤ Λε, for all y ∈ [0, 1].

Hence, we conclude that the Eq (6.4) has the H-U stability on [0, 1] with respect to ε = 1.3291.

Example 6.3. [7, 35] Consider the example as follows:

ζ(y) = y2 +
16
15

y
5
2 −

∫ y

0
(y − µ)−

1
2 ζ(µ)dµ, y ∈ [0, 1], (6.5)

where the exact solution is ζ(y) = y2.
We can write this Eq (6.5) in the form of Eq (1.1) as,

ζ(y) = y2 +
16
15

y
5
2 +

ψ(y)
Γ(1

2 )

∫ y

0
(y − µ)−

1
2 ξ(µ)H(ζ(µ))dµ, y ∈ [0, 1]. (6.6)

Then by comparing with Eq (1.1), we get N(y) = y2 + 16
15y5/2, ψ(y) = −Γ( 1

2 ), ξ(µ) = 1,H(ζ(µ)) = ζ(µ),
λ = 1

2 and β = 1. It’s very easy to show that Eq (6.5) satisfies all assumption of Theorem 3.1. Hence,
by Theorem 3.1, Eq (6.5) has at least one solution defined on [0, 1].

Now to find the approximate numerical solution we applying the proposed algorithm for n = 2, and
by choosing y0 = 0.1, y1 = 0.15, y2 = 0.2 in the given interval [0, 1], then computing all steps, we get
the approximate solution of Eq (6.5) as follows:

J2 = (2)L0(y) + (−4)L1(y) + (2)L2(y) = y2.

This shows that the approximate solution of Eq (6.5) is same as the exact solution for n = 2, by
this proposed method. In [7], the maximum absolute error found for k = 6,M = 8, i.e., for 256
collocation points is 4.82e − 08. In [35], for n = 14, the maximum absolute error of order 1.0e − 11
was obtained, while we got the exact solution for n = 2, i.e., for 3 collocation points only. Therefore,
our proposed method described in Section 4 is better than [7,35]. Moreover, Figure 3 shows the graph
of approximate and exact solutions for n = 2.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

S
o

lu
ti
o

n
 A

x
is

Figure 3. Graphical representation of approximate and exact solutions of Example 6.3.
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Also, for Eq (6.5), we see that B2 = Γ(1
2 ), B3 = 1, β = 1, λ = 1

2 , and for all ζ1, ζ2 ∈ W,
|H(ζ1) − H(ζ2)| = |ζ1 − ζ2|, which implies B = 1. Now, Γ(λ+1)

B2B3βλ
= 0.5. So, the relation 0 < B < Γ(λ+1)

B2B3βλ

does not hold. Therefore, we can’t say the H-U-R stability in this instance on the whole interval [0, 1].

Now we will check the H-U-R stability on the subinterval [0, 0.2], which contains the collocation
points y0 = 0.1, y1 = 0.15, and y2 = 0.2. Clearly, in this case β = 0.2. Then,

Γ(λ + 1)
B2B3βλ

≈ 1.1180.

So, the relation 0 < B < Γ(λ+1)
B2B3βλ

holds for β = 0.2. Thus, all conditions of Theorem 3.2 are satisfied on
the interval [0, 0.2]. Now, if we simply choose ζ(y) = 0, then

∣∣∣ζ(y) − N(y) −
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣ =
∣∣∣0 − y2 −

16
15

y
5
2 + 0

∣∣∣
≤

31y2

15
= v(y), for all y ∈ [0, 0.2].

Hence, by Theorem 3.3, we conclude that the Eq (6.5) has the H-U-R stability on [0, 0.2] with respect
to v(y) =

31y2

15 .

Example 6.4. Consider the example as follows:

ζ(y) = y2 + y −
sin y

3465 · Γ(5
2 )

(
96y

11
2 + 176y

9
2
)

+
sin y
Γ(5

2 )

∫ y

0
(y − µ)

3
2 µ ζ(µ)dµ, y ∈ [0, 1], (6.7)

where ζ(y) = y2 + y is the exact solution.

Comparing with Eq (1.1), we get N(y) = y2 + y − sin y
3465·Γ( 5

2 )

(
96y

11
2 + 176y

9
2

)
, ψ(y) = sin y, ξ(µ) = µ,

H(ζ(µ)) = ζ(µ), λ = 5
2 , and β = 1. It’s very easy to show that Eq (6.7) satisfies all assumption of

Theorem 3.1. Hence, by Theorem 3.1, Eq (6.7) has at least one solution defined on [0, 1].

Now to find the approximate numerical solution we applying the proposed algorithm for n = 2, and
by choosing y0 = 0.1, y1 = 0.2, y2 = 0.3 in the given interval [0, 1], then computing all steps, we get
the approximate solution of Eq (6.7) as follows:

J2(y) = (3)L0(y) + (−5)L1(y) + (2)L2(y) = y2 + y.

This shows that the approximate solution of Eq (6.7) is same as the exact solution for n = 2, by this
proposed method. Figure 4 shows the graph of approximate and exact solutions for n = 2.
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Figure 4. Graphical representation of approximate and exact solutions of Example 6.4.

Also, for Eq (6.7), we see that B2 = 1, B3 = 1, β = 1, λ = 5
2 , and for all ζ1, ζ2 ∈ W, |H(ζ1)−H(ζ2)| =

|ζ1 − ζ2|, which implies B = 1. Now, Γ(λ+1)
B2B3βλ

≈ 3.3234. So, the relation 0 < B < Γ(λ+1)
B2B3βλ

holds. Thus, all
conditions of Theorem 3.2 are satisfied on the interval [0, 1]. Now, if we simply choose ζ(y) = 0, then∣∣∣ζ(y) − N(y) −

ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣ =
∣∣∣0 − y2 − y +

sin y
3465 · Γ( 5

2 )

(
96y

11
2 + 176y

9
2
)
− 0

∣∣∣
≤ y2 + y = v(y), for all y ∈ [0, 1].

Hence, by Theorem 3.3, we conclude that the Eq (6.7) has the H-U-R stability on [0, 1] with respect to
v(y) = y2 + y.

Example 6.5. [6] Consider the example as follows:

ζ(y) = 1 + 3y −
1
2

y2 − y3 −
3
4

y4 +

∫ y

0
(y − µ) ζ2(µ)dµ, y ∈ [0, β], (6.8)

where the exact solution is ζ(y) = 1 + 3y.
Comparing with Eq (1.1), we getN(y) = 1 + 3y − 1

2y2 − y3 − 3
4y4, ψ(y) = Γ(2), ξ(µ) = 1,H(ζ(µ)) =

ζ2(µ), λ = 2, and 0 < β < 1. It’s very easy to show that Eq (6.8) satisfies all assumption of Theorem 3.1.
Thus, by Theorem 3.1, Eq (6.8) has at least one solution defined on [0, β], where 0 < β < 1.

Now to find the approximate numerical solution we applying the proposed algorithm for n = 1,
and by choosing y0 = 0.1, y1 = 0.2 in the given interval [0, β], then computing all steps, we get the
approximate solution of Eq (6.8) as follows:

J1(y) = (4)L0(y) + (−3)L1(y) = 1 + 3y.

This shows that the approximate solution of Eq (6.8) is same as the exact solution for n = 1, by this
proposed method.

In [6], the maximum absolute error found for m̂ = 6, i.e., for 6 collocation points is 1.1424e − 02,
while we got exact solution for n = 1, i.e., for 2 collocation points only. Therefore, our proposed
method described in Section 4 is better than the method given in [6]. Figure 5 shows the graph of exact
and approximate solutions for n = 1.
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Figure 5. Graphical representation of approximate and exact solutions of Example 6.5.

Also, for Eq (6.8), we see that B2 = 1, B3 = 1, λ = 2, and for all ζ1, ζ2 ∈ W, |H(ζ1) − H(ζ2)| ≤
B|ζ1 − ζ2|. As 0 < β < 1, we choose the interval [0, 0.9], which contains the collocation points y0 = 0.1
and y1 = 0.2. Now, Γ(λ+1)

B2B3βλ
≈ 2.4691. Thus, for those values of B with 0 < B < 2.4691 such that

|H(ζ1) − H(ζ2)| ≤ B|ζ1 − ζ2| holds, for all ζ1, ζ2 ∈ W, then all conditions of Theorem 3.2 are satisfied
on the interval [0, 0.9].

Therefore, if we choose ζ(y) = 2, then

∣∣∣ζ(y) − N(y) −
ψ(y)
Γ(λ)

∫ y

0
(y − µ)λ−1 ξ(µ)H(ζ(µ))dµ

∣∣∣ =
∣∣∣2 − (1 + 3y −

1
2

y2 − y3 −
3
4

y4) − 2y2
∣∣∣

≤ 1 + y = v(y), for all y ∈ [0, 0.9].

Hence, by Theorem 3.3, we conclude that the Eq (6.8) has the H-U-R stability on [0, 0.9] with respect
to v(y) = 1 + y.

7. Conclusions and future work

In this study, an effective method based on Laguerre polynomials has been proposed to get
approximate numerical solutions of Eq (1.1). We established the criteria for the existence and
uniqueness of the solutions of Eq (1.1) by using two important theorems, namely, Banach’s fixed point
theorem and the Leray-Schauder alternative. Also, we established the conditions of H-U-R and H-U
stability for the solutions of the considered Eq (1.1). Furthermore, we have provided five examples
and compared our computational findings with the exact solutions and with the solutions obtained by
some other numerical methods are given in Refs. [5–7, 34, 35]. For the comparison of numerical and
exact solutions, we have given all relevant figures for all examples. According to these study, we see
that our proposed method described in Section 4 has best accuracy and effectiveness in comparison to
some referenced methods.

More venues can be studied in the future, including singular (Fredholm or Volterra) integral
equations with kernels that are more complicated, such as kernels with modified (or delayed) inputs,
or kernels satisfy requirements different from those utilized in this work.
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