In this paper, we construct and prove the existence of theoretical solutions to non-isentropic Euler equations with a time-dependent linear damping and Coriolis force in Cartesian form. New exact solutions can be acquired based on this form with examples presented in this paper. By constructing appropriate matrices $ A(t) $, and vectors $ {\mathbf{b} }(t) $, special cases of exact solutions, where entropy $ s = \ln\rho $, are obtained. This is the first matrix form solution of non-isentropic Euler equations to the best of the authors' knowledge.
Citation: Xitong Liu, Xiao Yong Wen, Manwai Yuen. Cartesian vector solutions for $ N $-dimensional non-isentropic Euler equations with Coriolis force and linear damping[J]. AIMS Mathematics, 2023, 8(7): 17171-17196. doi: 10.3934/math.2023877
In this paper, we construct and prove the existence of theoretical solutions to non-isentropic Euler equations with a time-dependent linear damping and Coriolis force in Cartesian form. New exact solutions can be acquired based on this form with examples presented in this paper. By constructing appropriate matrices $ A(t) $, and vectors $ {\mathbf{b} }(t) $, special cases of exact solutions, where entropy $ s = \ln\rho $, are obtained. This is the first matrix form solution of non-isentropic Euler equations to the best of the authors' knowledge.
[1] | M. Ghil, S. Childress, Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics, New York: Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-1052-8 |
[2] | J. Pedlosky, Geophysical Fluid Dynamics, New York: Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-4650-3 |
[3] | J. Marshall, R. A. Plumb, Atmosphere, Ocean, and Climate Dynamics: An Introductory Text, San Diego, CA: Academic Press, 2008. |
[4] | F. V. Dolzhansky, Fundamentals of Geophysical Hydrodynamics, Berlin, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-31034-8 |
[5] | H. Liu, E. Tadmor, Rotation prevents finite-time breakdown, Phys. D, 188 (2004), 262–276. https://doi.org/10.1016/j.physd.2003.07.006 doi: 10.1016/j.physd.2003.07.006 |
[6] | B. Cheng, E. Tadmor, Long-time existence of smooth solutions for the rapidly rotating shallow-water and Euler equations, SIAM J. Math. Anal., 39 (2008), 1668–1685. https://doi.org/10.1137/070693643 doi: 10.1137/070693643 |
[7] | B. Cheng, C. J. Xie, On the classical solutions of two dimensional inviscid rotating shallow water system, J. Differ. Equations, 250 (2011), 690–709. https://doi.org/10.1016/j.jde.2010.09.017 doi: 10.1016/j.jde.2010.09.017 |
[8] | O. S. Rozanova, M. K. Turzynsky, Nonlinear stability of localized and non-localized vortices in rotating compressible media, In: Theory, Numerics and Applications of Hyperbolic Problems II, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-91548-7_41 |
[9] | O. S. Rozanova, J. L. Yu, C. K. Hu, Typhoon eye trajectory based on a mathematical model: Comparing with observational data, Nonlinear Anal. Real World Appl., 11 (2010), 1847–1861. https://doi.org/10.1016/j.nonrwa.2009.04.011 doi: 10.1016/j.nonrwa.2009.04.011 |
[10] | O. S. Rozanova, J. L. Yu, C. K. Hu, On the position of vortex in a two-dimensional model of atmosphere, Nonlinear Anal. Real World Appl., 13 (2012), 1941–1954. https://doi.org/10.1016/j.nonrwa.2011.12.023 doi: 10.1016/j.nonrwa.2011.12.023 |
[11] | O. S. Rozanova, M. K. Turzynsky, On systems of nonlinear ODE arising in gas dynamics: Application to vortical motion, In: Differential and Difference Equations with Applications, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-75647-9_32 |
[12] | O. S. Rozanova, M. K. Turzynsky, Full classification of motions with uniform deformation on a rotating plane, AIP Conf. Proc. 2164 (2019), 090005. https://doi.org/10.1063/1.5130835 |
[13] | O. S. Rozanova, M. K. Turzynsky, The stability of vortices in gas on the l-plane: The influence of centrifugal force, In: Nonlinear Analysis and Boundary Value Problems, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-26987-6_9 |
[14] | L. Hsiao, T. P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599–605. https://doi.org/10.1007/BF02099268 doi: 10.1007/BF02099268 |
[15] | D. Y. Fang, J. Xu, Existence and asymptotic behavior of C1 solutions to the multi-dimensional compressible Euler equations with damping, Nonlinear Anal. Theory Methods Appl., 70 (2009), 244–261. https://doi.org/10.1016/j.na.2007.11.049 doi: 10.1016/j.na.2007.11.049 |
[16] | F. M. Huang, R. H. Pan, Convergence rate for compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 166 (2003), 359–376. https://doi.org/10.1007/s00205-002-0234-5 doi: 10.1007/s00205-002-0234-5 |
[17] | W. K. Wang, T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Differ. Equations, 173 (2001), 410–450. https://doi.org/10.1006/jdeq.2000.3937 doi: 10.1006/jdeq.2000.3937 |
[18] | F. M. Huang, R. H. Pan, Asymptotic behavior of the solutions to the damped compressible Euler equations with vacuum, J. Differ. Equations, 220 (2006), 207–233. https://doi.org/10.1016/j.jde.2005.03.012 doi: 10.1016/j.jde.2005.03.012 |
[19] | F. M. Huang, P. Marcati, R. H. Pan, Convergence to the Barenblatt solution for the compressible Euler equations with damping and vacuum, Arch. Ration. Mech. Anal., 176 (2005), 1–24. https://doi.org/10.1007/s00205-004-0349-y doi: 10.1007/s00205-004-0349-y |
[20] | K. W. Chow, E. G. Fan, M. W. Yuen, The analytical solutions for the $N$-dimensional damped compressible Euler equations, Stud. Appl. Math., 138 (2017), 294–316. https://doi.org/10.1111/sapm.12154 doi: 10.1111/sapm.12154 |
[21] | J. W. Dong, J. J. Li, Analytical solutions to the compressible Euler equations with time-dependent damping and free boundaries, J. Math. Phys., 63 (2022), 101502. https://doi.org/10.1063/5.0089142 doi: 10.1063/5.0089142 |
[22] | S. Friedlander, M. M. Vishik, Lax pair formulation for the Euler equation, Phys. Lett. A, 148 (1990), 313–319. https://doi.org/10.1016/0375-9601(90)90809-3 doi: 10.1016/0375-9601(90)90809-3 |
[23] | Y. Li, A Lax pair for the two dimensional Euler equation, J. Math. Phys., 42 (2001), 3552–3553. https://doi.org/10.1063/1.1378305 doi: 10.1063/1.1378305 |
[24] | Y. Li, A. V. Yurov, Lax pairs and Darboux transformations for Euler equations, Stud. Appl. Math., 111 (2003), 101–113. https://doi.org/10.1111/1467-9590.t01-1-00229 doi: 10.1111/1467-9590.t01-1-00229 |
[25] | S. Y. Lou, M. Jia, X. Y. Tang, F. Huang, Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation, Phys. Rev. E, 75 (2007), 056318. https://doi.org/10.1103/PhysRevE.75.056318 doi: 10.1103/PhysRevE.75.056318 |
[26] | S. Y. Lou, M. Jia, F. Huang, X. Y. Tang, Bäcklund transformations, solitary waves, conoid waves and Bessel waves of the (2+1)-dimensional Euler equation, Internat. J. Theoret. Phys., 46 (2007), 2082–2095. https://doi.org/10.1007/s10773-006-9327-5 doi: 10.1007/s10773-006-9327-5 |
[27] | L. I. Sedov, Similarity and Dimensional Methods in Mechanics, Boca Raton: CRC Press, 1993. https://doi.org/10.1201/9780203739730 |
[28] | A. J. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511613203 |
[29] | A. G. Ramn, Inverse Problems: Mathematical and Analytical Techniques with Applications to Engineering, Cham: Springer, 2005. https://doi.org/10.1007/b100958 |
[30] | P. G. Drazin, N. Riley, The Navier-Stokes Equations: A Classification of Flows and Exact Solutions, Cambridge: Cambridge University Press, 2006. https://doi.org/10.1017/CBO9780511526459 |
[31] | M. W. Yuen, Self-similar solutions with elliptic symmetry for the compressible Euler and Navier-Stokes equations in $R^N$, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4524–4528. https://doi.org/10.1016/j.cnsns.2012.05.022 doi: 10.1016/j.cnsns.2012.05.022 |
[32] | M. W. Yuen, Vortical and self-similar flows of 2D compressible Euler equations, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2172–2180. https://doi.org/10.1016/j.cnsns.2013.11.008 doi: 10.1016/j.cnsns.2013.11.008 |
[33] | M. W. Yuen, Rotational and self-similar solutions for the compressible Euler equations in $R^3$, Commun. Nonlinear Sci. Numer. Simul., 20 (2015), 634–640. https://doi.org/10.1016/j.cnsns.2014.06.027 doi: 10.1016/j.cnsns.2014.06.027 |
[34] | I. F. Barna, L. Mátyásb, Analytic solutions for the one-dimensional compressible Euler equation with heat conduction and with different kind of equations of state, Miskolc Math. Notes, 14 (2013), 785–799. https://doi.org/10.18514/MMN.2013.694 doi: 10.18514/MMN.2013.694 |
[35] | I. F. Barna, L. Mátyásb, Analytic solutions for the three-dimensional compressible Navier-Stokes equation, Fluid Dyn. Res., 46 (2014), 055508. https://doi.org/10.1088/0169-5983/46/5/055508 doi: 10.1088/0169-5983/46/5/055508 |
[36] | H. L. An, E. G. Fan, M. W. Yuen, The Cartesian vector solutions for the $N$-dimensional compressible Euler equations, Stud. Appl. Math., 134 (2015), 101–119. https://doi.org/10.1111/sapm.12056 doi: 10.1111/sapm.12056 |
[37] | E. G. Fan, M. W. Yuen, A method for constructing special solutions for multidimensional generalization of Euler equations with Coriolis force, Chinese J. Phys., 72 (2021), 136–144. https://doi.org/10.1016/j.cjph.2021.03.013 doi: 10.1016/j.cjph.2021.03.013 |
[38] | T. T. Li, Y. Zhou, D. X. Kong, Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems, Commun. Partial Differ. Equ., 19 (1994), 1263–1317. https://doi.org/10.1080/03605309408821055 doi: 10.1080/03605309408821055 |
[39] | T. T. Li, Y. Zhou, D. X. Kong, Global classical solutions for general quasilinear hyperbolic systems with decay initial data, Nonlinear Anal., 28 (1997), 1299–1332. https://doi.org/10.1016/0362-546X(95)00228-N doi: 10.1016/0362-546X(95)00228-N |
[40] | G. Chen, R. H. Pan, S. G. Zhu, Singularity formation for the compressible Euler equations, SIAM J. Math. Anal., 49 (2017), 2591–2614. https://doi.org/10.1137/16M1062818 doi: 10.1137/16M1062818 |