Research article Special Issues

Multi-criteria decision-making based on Pythagorean cubic fuzzy Einstein aggregation operators for investment management

  • Received: 05 March 2023 Revised: 15 April 2023 Accepted: 24 April 2023 Published: 16 May 2023
  • MSC : 03E72, 08A72, 03B52, 91B0

  • Pythagorean cubic fuzzy sets (PCFSs) are a more advanced version of interval-valued Pythagorean fuzzy sets where membership and non-membership are depicted using cubic sets. These sets offer a greater amount of data to handle uncertainties in the information. However, there has been no previous research on the use of Einstein operations for aggregating PCFSs. This study proposes two new aggregator operators, namely, Pythagorean cubic fuzzy Einstein weighted averaging (PCFEWA) and Pythagorean cubic fuzzy Einstein ordered weighted averaging (PCFEOWA), which extend the concept of Einstein operators to PCFSs. These operators offer a more effective and precise way of aggregating Pythagorean cubic fuzzy information, especially in decision-making scenarios involving multiple criteria and expert opinions. To illustrate the practical implementation of this approach, we apply an established MCDM model and conduct a case study aimed at identifying the optimal investment market. This case study enables the evaluation and validation of the established MCDM model's effectiveness and reliability, thus making a valuable contribution to the field of investment analysis and decision-making. The study systematically compares the proposed approach with existing methods and demonstrates its superiority in terms of validity, practicality and effectiveness. Ultimately, this paper contributes to the ongoing development of sophisticated techniques for modeling and analyzing complex systems, offering practical solutions to real-world decision-making problems.

    Citation: Esmail Hassan Abdullatif Al-Sabri, Muhammad Rahim, Fazli Amin, Rashad Ismail, Salma Khan, Agaeb Mahal Alanzi, Hamiden Abd El-Wahed Khalifa. Multi-criteria decision-making based on Pythagorean cubic fuzzy Einstein aggregation operators for investment management[J]. AIMS Mathematics, 2023, 8(7): 16961-16988. doi: 10.3934/math.2023866

    Related Papers:

  • Pythagorean cubic fuzzy sets (PCFSs) are a more advanced version of interval-valued Pythagorean fuzzy sets where membership and non-membership are depicted using cubic sets. These sets offer a greater amount of data to handle uncertainties in the information. However, there has been no previous research on the use of Einstein operations for aggregating PCFSs. This study proposes two new aggregator operators, namely, Pythagorean cubic fuzzy Einstein weighted averaging (PCFEWA) and Pythagorean cubic fuzzy Einstein ordered weighted averaging (PCFEOWA), which extend the concept of Einstein operators to PCFSs. These operators offer a more effective and precise way of aggregating Pythagorean cubic fuzzy information, especially in decision-making scenarios involving multiple criteria and expert opinions. To illustrate the practical implementation of this approach, we apply an established MCDM model and conduct a case study aimed at identifying the optimal investment market. This case study enables the evaluation and validation of the established MCDM model's effectiveness and reliability, thus making a valuable contribution to the field of investment analysis and decision-making. The study systematically compares the proposed approach with existing methods and demonstrates its superiority in terms of validity, practicality and effectiveness. Ultimately, this paper contributes to the ongoing development of sophisticated techniques for modeling and analyzing complex systems, offering practical solutions to real-world decision-making problems.



    加载中


    [1] X. Li, Y. Sun, Stock intelligent investment strategy based on support vector machine parameter optimization algorithm, Neural Comput. Appl., 32 (2020), 1765–1775. https://doi.org/10.1007/s00521-019-04566-2 doi: 10.1007/s00521-019-04566-2
    [2] X. Li, Y. Sun, Application of RBF neural network optimal segmentation algorithm in credit rating, Neural Comput. Appl., 33 (2021), 8227–8235. https://doi.org/10.1007/s00521-020-04958-9 doi: 10.1007/s00521-020-04958-9
    [3] H. Garg, D. Rani, Some generalized complex intuitionistic fuzzy aggregation operators and their application to multicriteria decision-making process, Arab. J. Sci. Eng., 44 (2019), 2679–2698. https://doi.org/10.1007/s13369-018-3413-x doi: 10.1007/s13369-018-3413-x
    [4] T. Senapati, G. Chen, R. Mesiar, R. R. Yager, Novel Aczel-Alsina operations-based interval-valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision-making process, Int. J. Intell. Syst., 37 (2022), 5059–5081. https://doi.org/10.1002/int.22751 doi: 10.1002/int.22751
    [5] P. Liu, P. Wang, Some improved linguistic intuitionistic fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Inf. Tech. Decis., 16 (2017), 817–850. https://doi.org/10.1142/S0219622017500110 doi: 10.1142/S0219622017500110
    [6] M. Akram, X. Peng, A. Sattar, A new decision-making model using complex intuitionistic fuzzy Hamacher aggregation operators, Soft Comput., 25 (2021), 7059–7086. https://doi.org/10.1007/s00500-021-05658-9 doi: 10.1007/s00500-021-05658-9
    [7] M. Riaz, H. M. A. Farid, Picture fuzzy aggregation approach with application to third-party logistic provider selection process, Rep. Mech. Eng., 3 (2022), 227–236. https://doi.org/10.31181/rme20023062022r doi: 10.31181/rme20023062022r
    [8] R. Verma, J. M. Merigó, Multiple attribute group decision making based on 2-dimension linguistic intuitionistic fuzzy aggregation operators, Soft Comput., 24 (2020), 17377–17400. https://doi.org/10.1007/s00500-020-05026-z doi: 10.1007/s00500-020-05026-z
    [9] H. Garg, New logarithmic operational laws and their aggregation operators for Pythagorean fuzzy set and their applications, Int. J. Intell. Syst., 34 (2019), 82–106. https://doi.org/10.1002/int.22043
    [10] S. Abdullah, M. Qiyas, M. Naeem, Y. Liu, Pythagorean cubic fuzzy Hamacher aggregation operators and their application in green supply selection problem, AIMS Math., 7 (2022), 4735–4766. https://doi.org/10.3934/math.2022263 doi: 10.3934/math.2022263
    [11] X. Peng, Y. Yang, Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst., 31 (2016), 444–487. https://doi.org/10.1002/int.21790 doi: 10.1002/int.21790
    [12] R. M. Zulqarnain, I. Siddique, R. Ali, F. Jarad, A. Iampan, Multicriteria decision-making approach for pythagorean fuzzy hypersoft sets' interaction aggregation operators, Math. Probl. Eng., 2021 (2021), 1–17. https://doi.org/10.1155/2021/9964492 doi: 10.1155/2021/9964492
    [13] F. Amin, M. Rahim, A. Ali, E. Ameer, Generalized cubic Pythagorean fuzzy aggregation operators and their application to multi-attribute decision-making problems, Int. J. Comput. Intell. Syst., 15 (2022), 92. https://doi.org/10.1007/s44196-022-00145-x doi: 10.1007/s44196-022-00145-x
    [14] M. Rahim, F. Amin, A. Ali, K. Shah, An extension of Bonferroni mean under cubic Pythagorean fuzzy environment and its applications in selection-based problems, Math. Probl. Eng., 2022 (2022). https://doi.org/10.1155/2022/9735100 doi: 10.1155/2022/9735100
    [15] F. Khan, S. Abdullah, T. Mahmood, M. Shakeel, M. Rahim, Pythagorean cubic fuzzy aggregation information based on confidence levels and its application to multi-criteria decision making process, J. Intell. Fuzzy Syst., 36 (2019), 5669–5683. https://doi.org/10.3233/JIFS-181516 doi: 10.3233/JIFS-181516
    [16] G. Kaur, H. Garg, Cubic intuitionistic fuzzy aggregation operators, Int. J. Uncertain. Quan., 8 (2018). https://doi.org/10.1615/Int.J.UncertaintyQuantification.2018020471
    [17] P. Liu, S. Naz, M. Akram, M. Muzammal, Group decision-making analysis based on linguistic q-rung orthopair fuzzy generalized point weighted aggregation operators, Int. J. Mach. Learn. Cyb., 2022, 1–24.
    [18] H. M. A. Farid, M. Riaz, q-rung orthopair fuzzy Aczel-Alsina aggregation operators with multi-criteria decision-making, Eng. Appl. Artif. Intell., 122 (2023), 106105. https://doi.org/10.1016/j.engappai.2023.106105 doi: 10.1016/j.engappai.2023.106105
    [19] Z. Wu, S. Shen, X. Lian, X. Su, E. Chen, A dummy-based user privacy protection approach for text information retrieval, Knowl.-Based Syst., 195 (2020), 105679. https://doi.org/10.1016/j.knosys.2020.105679 doi: 10.1016/j.knosys.2020.105679
    [20] Z. Wu, S. Xuan, J. Xie, C. Lin, C. Lu, How to ensure the confidentiality of electronic medical records on the cloud: A technical perspective, Comput. Biol. Med., 147 (2022), 105726. https://doi.org/10.1016/j.compbiomed.2022.105726 doi: 10.1016/j.compbiomed.2022.105726
    [21] Z. Wu, S. Shen, H. Li, H. Zhou, C. Lu, A basic framework for privacy protection in personalized information retrieval: An effective framework for user privacy protection, J. Organ. End. User Comput., 33 (2021), 1–26. https://doi.org/10.4018/JOEUC.292526 doi: 10.4018/JOEUC.292526
    [22] L. Zhou, Z. Tao, H. Chen, J. Liu, Continuous interval-valued intuitionistic fuzzy aggregation operators and their applications to group decision making, Appl. Math. Model., 38 (2014), 2190–2205. https://doi.org/10.1016/j.apm.2013.10.036 doi: 10.1016/j.apm.2013.10.036
    [23] Z. Wu, G. Li, S. Shen, X. Lian, E. Chen, G. Xu, Constructing dummy query sequences to protect location privacy and query privacy in location-based services, World Wide Web, 24 (2021), 25–49. https://doi.org/10.1007/s11280-020-00830-x doi: 10.1007/s11280-020-00830-x
    [24] Z. Wu, J. Xie, S. Shen, C. Lin, G. Xu, E. Chen, A confusion method for the protection of user topic privacy in Chinese keyword based book retrieval, ACM T. Asian Low-Reso., 2023, https://doi.org/10.1145/3571731 doi: 10.1145/3571731
    [25] Z. Zhang, H. Zhang, L. Zhou, Y. Qin, L. Jia, Incomplete pythagorean fuzzy preference relation for subway station safety management during COVID-19 pandemic, Exp. Syst. Appl., 216 (2023), 119445. https://doi.org/10.1016/j.eswa.2022.119445 doi: 10.1016/j.eswa.2022.119445
    [26] W. Wang, X. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein operations, Int. J. Intel. Syst., 26 (2011), 1049–1075. https://doi.org/10.1002/int.20498 doi: 10.1002/int.20498
    [27] M. Riaz, H. M. A. Farid, H. Kalsoom, D. Pamučar, Y. M. Chu, A robust q-rung orthopair fuzzy Einstein prioritized aggregation operators with application towards MCGDM, Symmetry, 12 (2020), 1058. https://doi.org/10.3390/sym12061058 doi: 10.3390/sym12061058
    [28] M. Akram, A. Bashir, S. Edalatpanah, A hybrid decision-making analysis under complex q-rung picture fuzzy Einstein averaging operators, Comput. Appl. Math., 40 (2021), 1–35. https://doi.org/10.1007/s40314-020-01383-5 doi: 10.1007/s40314-020-01383-5
    [29] P. Rani, A. R. Mishra, Fermatean fuzzy Einstein aggregation operators-based MULTIMOORA method for electric vehicle charging station selection, Exp. Syst. Appl., 182 (2021), 115267. https://doi.org/10.1016/j.eswa.2021.115267 doi: 10.1016/j.eswa.2021.115267
    [30] M. Kamran, S. Ashraf, N. Salamat, M. Naeem, T. Botmart, Cyber security control selection based decision support algorithm under single valued neutrosophic hesitant fuzzy Einstein aggregation information, AIMS Math., 8 (2023), 5551–5573. https://doi.org/10.3934/math.2023280 doi: 10.3934/math.2023280
    [31] W. Azeem, W. Mahmood, T. Mahmood, Z. Ali, M. Naeem, Analysis of Einstein aggregation operators based on complex intuitionistic fuzzy sets and their applications in multi-attribute decision-making, AIMS Math., 8 (2023), 6036–6063. https://doi.org/10.3934/math.2023305 doi: 10.3934/math.2023305
    [32] Z. Wu, S. Shen, H. Zhou, H. Li, C. Lu, D. Zou, An effective approach for the protection of user commodity viewing privacy in e-commerce website, Knowl.-Based Syst., 220 (2021), 106952. https://doi.org/10.1016/j.knosys.2021.106952 doi: 10.1016/j.knosys.2021.106952
    [33] H. M. A. Farid, M. Riaz, M. J. Khan, P. Kumam, K. Sitthithakerngkiet, Sustainable thermal power equipment supplier selection by Einstein prioritized linear Diophantine fuzzy aggregation operators, AIMS Math., 7 (2022), 11201–11242. https://doi.org/10.3934/math.2022627 doi: 10.3934/math.2022627
    [34] M. Qiyas, M. Naeem, S. Abdullah, N. Khan, Decision support system based on complex T-spherical fuzzy power aggregation operators, AIMS Math., 7 (2022), 16171–16207. https://doi.org/10.3934/math.2022884 doi: 10.3934/math.2022884
    [35] M. Akram, S. Naz, F. Feng, A. Shafiq, Assessment of hydropower plants in Pakistan: Muirhead mean-based 2-tuple linguistic t-spherical fuzzy model combining SWARA with COPRAS, Arab. J. Sci. Eng., 2022, 1–30. https://doi.org/10.1007/s13369-022-07081-0 doi: 10.1007/s13369-022-07081-0
    [36] M. Akram, G. Shahzadi, X. Peng, Extension of Einstein geometric operators to multi-attribute decision making under q-rung orthopair fuzzy information, Granular Comput., 6 (2021), 779–795. https://doi.org/10.1007/s41066-020-00233-3 doi: 10.1007/s41066-020-00233-3
    [37] M. Akram, A. Khan, A. B. Saeid, Complex Pythagorean Dombi fuzzy operators using aggregation operators and their decision-making, Exp. Syst., 38 (2021), e12626. https://doi.org/10.1111/exsy.12626 doi: 10.1111/exsy.12626
    [38] F. Khan, M. S. A. Khan, M. Shahzad, S. Abdullah, Pythagorean cubic fuzzy aggregation operators and their application to multi-criteria decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 595–607. https://doi.org/10.3233/JIFS-18943 doi: 10.3233/JIFS-18943
    [39] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Position paper I: Basic analytical and algebraic properties, Fuzzy Set. Syst., 143 (2004), 5–26. https://doi.org/10.1016/j.fss.2003.06.007
    [40] S. Seker, C. Kahraman, A Pythagorean cubic fuzzy methodology based on TOPSIS and TODIM methods and its application to software selection problem, Soft Comput., 26 (2022), 2437–2450. https://doi.org/10.1007/s00500-021-06469-8
    [41] A. Hussain, J. R. Lee, M. S. Ali Khan, D. Y. Shin, Analysis of social networks by using Pythagorean cubic fuzzy Einstein weighted geometric aggregation operators, J. Math., 2021 (2021), 1–18. https://doi.org/10.1155/2021/5516869 doi: 10.1155/2021/5516869
    [42] Z. Zhang, H. Zhang, L. Zhou, Zero-carbon measure prioritization for sustainable freight transport using interval 2 tuple linguistic decision approaches, Appl. Soft Comput., 132 (2023), 109864. https://doi.org/10.1016/j.asoc.2022.109864 doi: 10.1016/j.asoc.2022.109864
    [43] Z. Zhang, J. Guo, H. Zhang, Y. Qin, Additive consistency of q-rung orthopair fuzzy preference relations with application to risk analysis, J. Intell. Fuzzy Syst., 44 (2023), 6939–6955. https://doi.org/10.3233/JIFS-221859 doi: 10.3233/JIFS-221859
    [44] L. Zhou, Z. Zhang, L. Zhao, P. Yang, Attention-based BiLSTM models for personality recognition from user-generated content, Inform. Sci., 596 (2022), 460–471. https://doi.org/10.1016/j.ins.2022.03.038 doi: 10.1016/j.ins.2022.03.038
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1440) PDF downloads(80) Cited by(5)

Article outline

Figures and Tables

Figures(4)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog