Research article Special Issues

Impact of couple stress and variable viscosity on heat transfer and flow between two parallel plates in conducting field

  • These authors contributed equally to this work and are co-first authors.
  • Received: 19 February 2023 Revised: 13 April 2023 Accepted: 23 April 2023 Published: 12 May 2023
  • MSC : 35Q79, 93C20

  • This study explores the flow properties of a couple stress fluid with the consideration of variable viscosity and a uniform transverse magnetic field. Under the effect of irreversible heat transfer, a steady fluid flow has taken place between two parallel inclined plates. The fluid flows due to gravity and the constant pressure gradient force. The plates are fixed and isothermal. The governing equations have been solved analytically for velocity and temperature fields. The total rate of heat flow and volume flow across the channel, skin friction, and Nusselt number at both plates are calculated and represent the impacts of relevant parameters through tables and graphs. The findings show that velocity, temperature, and the total rate of heat flow across the channel are enhanced by increasing the couple stress parameter and the viscosity variation parameter, while increasing the values of the Hartmann number reduces them.

    Citation: Geetika Saini, B. N. Hanumagowda, S. V. K. Varma, Jasgurpreet Singh Chohan, Nehad Ali Shah, Yongseok Jeon. Impact of couple stress and variable viscosity on heat transfer and flow between two parallel plates in conducting field[J]. AIMS Mathematics, 2023, 8(7): 16773-16789. doi: 10.3934/math.2023858

    Related Papers:

  • This study explores the flow properties of a couple stress fluid with the consideration of variable viscosity and a uniform transverse magnetic field. Under the effect of irreversible heat transfer, a steady fluid flow has taken place between two parallel inclined plates. The fluid flows due to gravity and the constant pressure gradient force. The plates are fixed and isothermal. The governing equations have been solved analytically for velocity and temperature fields. The total rate of heat flow and volume flow across the channel, skin friction, and Nusselt number at both plates are calculated and represent the impacts of relevant parameters through tables and graphs. The findings show that velocity, temperature, and the total rate of heat flow across the channel are enhanced by increasing the couple stress parameter and the viscosity variation parameter, while increasing the values of the Hartmann number reduces them.



    加载中


    [1] A. Bég, A. Y. Bakier, V. R. Prasad, J. Zueco, S. K. Ghosh, Nonsimilar, laminar, steady, electrically-conducting forced convection liquid metal boundary layer flow with induced magnetic field effects, Int. J. Therm. Sci., 48 (2009), 1596–1606. https://doi.org/10.1016/j.ijthermalsci.2008.12.007 doi: 10.1016/j.ijthermalsci.2008.12.007
    [2] A. Setayesh, V. Sahai, Heat transfer in developing magnetohydrodynamic Poiseuille flow and variable transport properties, Int. J. Heat Mass Tran., 33 (1990), 1711–1720. https://doi.org/10.1016/0017-9310(90)90026-Q doi: 10.1016/0017-9310(90)90026-Q
    [3] N. A. Shah, A. Ebaid, T. Oreyeni, S. J. Yook, MHD and porous effects on free convection flow of viscous fluid between vertical parallel plates: advance thermal analysis, Waves in Random and Complex Media, 2023. https://doi.org/10.1080/17455030.2023.2186717 doi: 10.1080/17455030.2023.2186717
    [4] M. Farooq, M. T. Rahim, S. Islam, A. M. Siddiqui, Steady Poiseuille flow and heat transfer of couple stress fluids between two parallel inclined plates with variable viscosity, J. Assoc. Arab Univ. Basic Appl. Sci., 14 (2013), 9–18. https://doi.org/10.1016/j.jaubas.2013.01.004 doi: 10.1016/j.jaubas.2013.01.004
    [5] A. Khan, M. Farooq, R. Nawaz, M. Ayza, H. Ahmad, H. Abu-Zinadah, et al., Analysis of couple stress fluid flow with variable viscosity using two homotopy-based methods, Open Phys., 19 (2021), 134–145. https://doi.org/10.1515/phys-2021-0015 doi: 10.1515/phys-2021-0015
    [6] V. K. Stokes, Couple stresses in fluids, Phys. Fluids, 9 (1996), 1709–1715. https://doi.org/10.1063/1.1761925 doi: 10.1063/1.1761925
    [7] V. K. Stokes, Couple stresses in fluids, In: Theories of fluids with microstructure, Heidelberg: Springer, 1984. https://doi.org/10.1007/978-3-642-82351-0_4
    [8] J. A. Falade, S. O. Adesanya, J. C. Ukaegbu, M. O. Osinowo, Entropy generation analysis for variable viscous couple stress fluid flow through a channel with non-uniform wall temperature, Alex. Eng. J., 55 (2016), 69–75. https://doi.org/10.1016/j.aej.2016.01.011 doi: 10.1016/j.aej.2016.01.011
    [9] M. Farooq, S. Islam, M. T. Rahim, T. Haroon, Heat transfer flow of steady couple stress fluids between two parallel plates with variable viscosity, Heat Transf. Res., 42 (2011), 737–780. https://doi.org/10.1615/HeatTransRes.2012000996 doi: 10.1615/HeatTransRes.2012000996
    [10] D. Srinivasacharya, K. Kaladhar, Analytical solution of MHD free convective flow of couple stress fluid in an annulus with Hall and ion-slip effects, Nonlinear Anal. Model. Control, 16 (2011), 477–487. https://doi.org/10.15388/NA.16.4.14090 doi: 10.15388/NA.16.4.14090
    [11] S. Jangili, S. O. Adesanya, H. A. Ogunseye, R. Lebelo, Couple stress fluid flow with variable properties: A second law analysis, Math. Method. Appl. Sci., 42 (2019), 85–98. https://doi.org/10.1002/mma.5325 doi: 10.1002/mma.5325
    [12] N. T. M. EL-Dabe, S. M. G. EL-Mohandis, Effect of couple stresses on pulsatile hydromagnetic poiseuille flow, Fluid Dyn. Res., 15 (1995), 313–324. https://doi.org/10.1016/0169-5983(94)00049-6 doi: 10.1016/0169-5983(94)00049-6
    [13] L. Jayaraman, G. Ramanaiah, Effect of couple stresses on transient MHD poiseuille flow, J. Comput. Phys., 60 (1985), 478–488. https://doi.org/10.1016/0021-9991(85)90032-4 doi: 10.1016/0021-9991(85)90032-4
    [14] K. Ramesh, Influence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channel, J. Mol. Liq., 219 (2016), 256–271. https://doi.org/10.1016/j.molliq.2016.03.010 doi: 10.1016/j.molliq.2016.03.010
    [15] M. Dhlamini, H. Mondal, P. Sibanda, S. Motsa, Numerical analysis of couple stress nanofluid in temperature dependent viscosity and thermal conductivity, Int. J. Appl. Comput. Math., 7 (2021), 48. https://doi.org/10.1007/s40819-021-00983-x doi: 10.1007/s40819-021-00983-x
    [16] R. Ellahi, A. Zeeshan, F. Hussain, T. Abbas, Two-phase Couette flow of couple stress fluid with temperature dependent viscosity thermally affected by magnetized moving surface, Symmetry, 11 (2019), 647. https://doi.org/10.3390/sym11050647 doi: 10.3390/sym11050647
    [17] L. Wang, Y. Jian, Q. Liu, F. Li, L. Chang, Electromagnetohydrodynamic flow and heat transfer of third grade fluids between two micro-parallel plates, Colloid. Surface. A, 494 (2016), 87–94. https://doi.org/10.1016/j.colsurfa.2016.01.006 doi: 10.1016/j.colsurfa.2016.01.006
    [18] Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal, Unsteady magnetohydrodynamic (MHD) thin film flow of a third grade fluid with heat transfer and no slip boundary condition down an inclined plane, Int. J. Phys. Sci., 8 (2013), 946–955. https://doi.org/10.5897/IJPS2013.3891 doi: 10.5897/IJPS2013.3891
    [19] Z. Shao, N. A. Shah, I. Tlili, U. Afzal, S. Khan, Hydromagnetic free convection flow of viscous fluid between vertical parallel plates with damped thermal and mass fluxes, Alex. Eng. J., 58 (2019), 989–1000. https://doi.org/10.1016/j.aej.2019.09.001 doi: 10.1016/j.aej.2019.09.001
    [20] O. Makinde, P. Y. Mhone, Heat transfer to MHD oscillatory flow in a channel Ölled with porous medium, Rom. J. Phys., 50 (2005), 931–938.
    [21] N. Ahmed, Heat and mass transfer in MHD Poiseuille flow with porous walls, J. Eng. Phys. Thermophys., 92 (2019), 122–131. https://doi.org/10.1007/s10891-019-01914-w doi: 10.1007/s10891-019-01914-w
    [22] J. Umavathi, I. C. Liu, P. Kumar, Magnetohydrodynamic Poiseuille-Couette flow and heat transfer in an inclined channel, J. Mech., 26 (2010), 525–532. https://doi.org/10.1017/S172771910000472X doi: 10.1017/S172771910000472X
    [23] N. Ahmed, M. Dutta, Heat transfer in an unsteady MHD flow through an infinite annulus with radiation, Bound. Value Probl., 2015 (2015), 11. https://doi.org/10.1186/s13661-014-0279-z doi: 10.1186/s13661-014-0279-z
    [24] B. Ogunmola, A. Akinshilo, G. Sobamowo, Perturbation solutions for Hagen-Poiseuille flow and heat transfer of third-grade fluid with temperature-dependent viscosities and internal heat generation, Int. J. Eng. Math., 2016 (2016), 8915745. https://doi.org/10.1155/2016/8915745 doi: 10.1155/2016/8915745
    [25] R. A. Shah, S. Islam, A. M. Siddiqui, T. Haroon, Heat transfer by laminar flow of a third grade fluid in wire coating analysis with temperature dependent and independent viscosity, Anal. Math. Phys., 1 (2011), 147–166. https://doi.org/10.1007/s13324-011-0011-4 doi: 10.1007/s13324-011-0011-4
    [26] A. R. Hassan, S. O. Salawu, A. B. Disu, The variable viscosity effects on hydromagnetic couple stress heat generating porous fluid flow with convective wall cooling, Sci. Afr., 9 (2020), e00495. https://doi.org/10.1016/j.sciaf.2020.e00495 doi: 10.1016/j.sciaf.2020.e00495
    [27] O. D. Makinde, T. Iskander, F. Mabood, W. A. Khan, M. S. Tshehla, MHD Couette-Poiseuille flow of variable viscosity nanofluids in a rotating permeable channel with Hall effects, J. Mol. Liq., 221 (2016), 778–787. https://doi.org/10.1016/j.molliq.2016.06.037 doi: 10.1016/j.molliq.2016.06.037
    [28] J. C. Umavathi, A. J. Chamkha, M. H. Manjula, A. Al-Mudhaf, Flow and heat transfer of a couple-stress fluid sandwiched between viscous fluid layers, Can. J. Phys., 83 (2005), 705–720. https://doi.org/10.1139/p05-032 doi: 10.1139/p05-032
    [29] M. A. Imran, N. A. Shah, I. Khan, M. Aleem, Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating, Neural Comput. Appl., 30 (2018), 1589–1599. https://doi.org/10.1007/s00521-016-2741-6 doi: 10.1007/s00521-016-2741-6
    [30] N. A. Shah, A. A. Zafar, S. Akhtar, General solution for MHD-free convection flow over a vertical plate with ramped wall temperature and chemical reaction, Arab. J. Math., 7 (2018), 49–60. https://doi.org/10.1007/s40065-017-0187-z doi: 10.1007/s40065-017-0187-z
    [31] O. D. Makinde, Laminar falling liquid film with variable viscosity along an inclined heated plate, Appl. Math. Comput., 175 (2006), 80–88. https://doi.org/10.1016/j.amc.2005.07.021 doi: 10.1016/j.amc.2005.07.021
    [32] O. D. Makinde, Entropy-generation analysis for variable-viscosity channel flow with non-uniform wall temperature, Appl. Energy, 85 (2008), 384–393. https://doi.org/10.1016/j.apenergy.2007.07.008 doi: 10.1016/j.apenergy.2007.07.008
    [33] A. B. Disu, M. S. Dada, Reynold's model viscosity on radiative MHD flow in a porous medium between two vertical wavy walls, J. Taibah Univ. Sci., 11 (2017), 548–565. https://doi.org/10.1016/j.jtusci.2015.12.001 doi: 10.1016/j.jtusci.2015.12.001
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1107) PDF downloads(74) Cited by(2)

Article outline

Figures and Tables

Figures(20)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog