Research article Special Issues

Existence and blowup of solutions for non-divergence polytropic variation-inequality in corn option trading

  • Received: 14 January 2023 Revised: 24 April 2023 Accepted: 25 April 2023 Published: 12 May 2023
  • MSC : 35K99, 97M30

  • This paper focuses on a class of variation-inequality problems involving non-divergence polytropic parabolic operators. The penalty method is employed, along with the Leray Schauder fixed point theory and limit progress, to determine the existence of solutions. The study also delves into the blow-up phenomena of the solution, revealing that under certain conditions, the solution will blow up in finite time.

    Citation: Jia Li, Changchun Bi. Existence and blowup of solutions for non-divergence polytropic variation-inequality in corn option trading[J]. AIMS Mathematics, 2023, 8(7): 16748-16756. doi: 10.3934/math.2023856

    Related Papers:

  • This paper focuses on a class of variation-inequality problems involving non-divergence polytropic parabolic operators. The penalty method is employed, along with the Leray Schauder fixed point theory and limit progress, to determine the existence of solutions. The study also delves into the blow-up phenomena of the solution, revealing that under certain conditions, the solution will blow up in finite time.



    加载中


    [1] C. Guan, Z. Xu, F. Yi, A consumption-investment model with state-dependent lower bound constraint on consumption, J. Math. Anal. Appl., 516 (2022), 126511. https://doi.org/10.1016/j.jmaa.2022.126511 doi: 10.1016/j.jmaa.2022.126511
    [2] X. Han, F. Yi, An irreversible investment problem with demand on a finite horizon: The optimal investment boundary analysis, Commun. Nonlinear Sci., 109 (2022), 106302. https://doi.org/10.1016/j.cnsns.2022.106302 doi: 10.1016/j.cnsns.2022.106302
    [3] C. Guan, F. Yi, J. Chen, Free boundary problem for a fully nonlinear and degenerate parabolic equation in an angular domain, J. Differ. Equations, 266 (2019), 1245–1284. https://doi.org/10.1016/j.jde.2018.07.070 doi: 10.1016/j.jde.2018.07.070
    [4] J. Li, C. Bi, Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems, AIMS Math., 7 (2022), 19758–19769. https://doi.org/10.3934/math.20221083 doi: 10.3934/math.20221083
    [5] Y. Sun, T. Wu, Study of weak solutions for degenerate parabolic inequalities with nonstandard conditions, J. Inequal. Appl., 2022 (2022), 141. https://doi.org/10.1186/s13660-022-02872-3 doi: 10.1186/s13660-022-02872-3
    [6] D. Adak, G. Manzini, S. Natarajan, Virtual element approximation of two-dimensional parabolic variational inequalities, Comput. Math. Appl., 116 (2022), 48–70. https://doi.org/10.1016/j.camwa.2021.09.007 doi: 10.1016/j.camwa.2021.09.007
    [7] S. B. Boyana, T. Lewis, A. Rapp, Y. Zhang, Convergence analysis of a symmetric dual-wind discontinuous Galerkin method for a parabolic variational inequality, J. Comput. Appl. Math., 422 (2023), 114922. https://doi.org/10.1016/j.cam.2022.114922 doi: 10.1016/j.cam.2022.114922
    [8] S. Migorski, V. T. Nguyen, S. Zeng, Solvability of parabolic variational-hemivariational inequalities involving space-fractional Laplacian, Appl. Math. Comput., 364 (2020), 124668. https://doi.org/10.1016/j.amc.2019.124668 doi: 10.1016/j.amc.2019.124668
    [9] J. Wang, W. Gao, Existence of nontrivial nonnegative periodic solutions for a class of doubly degenerate parabolic equation with nonlocal terms, J. Math. Anal. Appl., 331 (2007), 481–498. https://doi.org/10.1016/j.jmaa.2006.08.059 doi: 10.1016/j.jmaa.2006.08.059
    [10] J. Wang, W. Gao, M. Su, Periodic solutions of non-Newtonian polytropic filtration equations with nonlinear sources, Appl. Math. Comput., 216 (2010), 1996–2009. https://doi.org/10.1016/j.amc.2010.03.030 doi: 10.1016/j.amc.2010.03.030
    [11] W. Chen, T. Zhou, Existence of solutions for p-Laplacian parabolic Kirchhoff equation, Appl. Math. Lett., 122 (2021), 107527. https://doi.org/10.1016/j.aml.2021.107527 doi: 10.1016/j.aml.2021.107527
    [12] W. Zou, J. Li, Existence and uniqueness of solutions for a class of doubly degenerate parabolic equations, J. Math. Anal. Appl., 446 (2017), 1833–1862. https://doi.org/10.1016/j.jmaa.2016.10.002 doi: 10.1016/j.jmaa.2016.10.002
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1017) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog