Research article

Jensen, Ostrowski and Hermite-Hadamard type inequalities for $ h $-convex stochastic processes by means of center-radius order relation

  • Received: 27 October 2022 Revised: 20 January 2023 Accepted: 06 February 2023 Published: 04 May 2023
  • MSC : 26A48, 26A51, 33B10, 39A12, 39B62

  • In optimization, convex and non-convex functions play an important role. Further, there is no doubt that convexity and stochastic processes are closely related. In this study, we introduce the notion of the $ h- $convex stochastic process for center-radius order in the setting of interval-valued functions ($ \mathcal{IVFS} $) which is novel in literature. By using these notions we establish Jensen, Ostrowski, and Hermite-Hadamard ($ \mathcal{H.H} $) types inequalities for generalized interval-valued $ \mathcal{CR}-h $-convex stochastic processes. Furthermore, the study provides useful examples to support its findings.

    Citation: Mujahid Abbas, Waqar Afzal, Thongchai Botmart, Ahmed M. Galal. Jensen, Ostrowski and Hermite-Hadamard type inequalities for $ h $-convex stochastic processes by means of center-radius order relation[J]. AIMS Mathematics, 2023, 8(7): 16013-16030. doi: 10.3934/math.2023817

    Related Papers:

  • In optimization, convex and non-convex functions play an important role. Further, there is no doubt that convexity and stochastic processes are closely related. In this study, we introduce the notion of the $ h- $convex stochastic process for center-radius order in the setting of interval-valued functions ($ \mathcal{IVFS} $) which is novel in literature. By using these notions we establish Jensen, Ostrowski, and Hermite-Hadamard ($ \mathcal{H.H} $) types inequalities for generalized interval-valued $ \mathcal{CR}-h $-convex stochastic processes. Furthermore, the study provides useful examples to support its findings.



    加载中


    [1] R. E. Moore, Interval analysis, Englewood Cliffs, Prentice-Hall, 1966.
    [2] J. M. Snyder, Interval analysis for computer graphics, Proceedings of the 19th annual conference on computer graphics and interactive techniques, 1992,121–130.
    [3] N. A. Gasilov, Ş. E. Amrahov, Solving a nonhomogeneous linear system of interval differential equations, Soft Comput., 22 (2018), 3817–3828.
    [4] D. Singh, B. A. Dar, Sufficiency and duality in non-smooth interval valued programming problems, J. Ind. Manag. Optim., 15 (2019), 647–665. https://doi.org/10.3934/jimo.2018063 doi: 10.3934/jimo.2018063
    [5] E. de Weerdt, Q. P. Chu, J. A. Mulder, Neural network output optimization using interval analysis, IEEE T. Neural Networ., 20 (2009), 638–653. http://doi.org/10.1109/TNN.2008.2011267 doi: 10.1109/TNN.2008.2011267
    [6] A. Almutairi, A. Kılıçman, New refinements of the Hadamard inequality on coordinated convex function, J. Inequal. Appl., 2019 (2019), 192. https://doi.org/10.1186/s13660-019-2143-2 doi: 10.1186/s13660-019-2143-2
    [7] H. Budak, T. Tunç, M. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, P. Am. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
    [8] S. Rashid, H. Kalsoom, Z. Hammouch, R. Ashraf, New multi-parametrized estimates having pth-order differentiability in fractional calculus for predominating $h$-convex functions in Hilbert space, Symmetry, 12 (2020), 222. https://doi.org/10.3390/sym12020222 doi: 10.3390/sym12020222
    [9] X. J. Zhang, K. Shabbir, W. Afzal, H. Xiao, D. Lin, Hermite-Hadamard and Jensen-type inequalities via Riemann integral operator for a generalized class of Godunova-Levin functions, J. Math., 2022 (2022), 3830324. https://doi.org/10.1155/2022/3830324 doi: 10.1155/2022/3830324
    [10] B. Feng, M. Ghafoor, Y. M. Chu, M. I. Qureshi, X. Feng, Hermite-Hadamard and Jensen's type inequalities for modified $(p, h)$-convex functions, AIMS Math., 6 (2029), 6959–6971. https://doi.org/10.3934/math.2020446 doi: 10.3934/math.2020446
    [11] C. Park, Y. M. Chu, M. S. Saleem, Hermite-Hadamard-type inequalities for $\eta_h$-convex functions via $\Psi$-Riemann-Liouville fractional integrals, Adv. Cont. Disc. Model., 1 (2022), 1–8. https://doi.org/10.1186/s13662-022-03745-1 doi: 10.1186/s13662-022-03745-1
    [12] P. Y. Yan, Q. Li, Y. M. Chu, S. Mukhtar, S. Waheed, On some fractional integral inequalities for generalized strongly modified $h$-convex function, AIMS Math., 5 (2020), 6620–6638. https://doi.org/10.3934/math.2020426 doi: 10.3934/math.2020426
    [13] M. A. Ali, H. Budak, G. Murtaza, Y. M. Chu, Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions, J. Inequal. Appl., 1 (2021), 1–18. https://doi.org/10.1186/s13660-021-02619-6 doi: 10.1186/s13660-021-02619-6
    [14] H. Kara, M. A. Ali, H. Budak, Hermite-Hadamard-Mercer type inclusions for interval-valued functions via Riemann-Liouville fractional integrals, Turk. J. Math., 6 (2022), 2193–2207. https://doi.org/10.55730/1300-0098.3263 doi: 10.55730/1300-0098.3263
    [15] W. Afzal, K. Shabbir, T. Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued $(h_1, h_2)$-Godunova-Levin functions, AIMS Math., 7 (2022), 19372–19387. https://doi.org/10.3934/math.20221064 doi: 10.3934/math.20221064
    [16] W. Afzal, A. A. Lupaş, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical $(h_1, h_2)$-Godunova Levin interval-valued functions, Mathematics, 10 (2022), 2970. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970
    [17] I. A. Baloch, Y. M. Chu, Petrovic-type inequalities for harmonic-convex functions, J. Funct. Space., 2020 (2020), 3075390. https://doi.org/10.1155/2020/3075390 doi: 10.1155/2020/3075390
    [18] E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard type for m-polynomial convex interval-valued functions, Adv. Differ. Equ., 1 (2020), 1–17. https://doi.org/10.1186/s13662-020-02977-3 doi: 10.1186/s13662-020-02977-3
    [19] H. Kara, H. Budak, M. A. Ali, Weighted Hermite-Hadamard type inclusions for products of co-ordinated convex interval-valued functions, Adv. Differ. Equ., 1 (2021), 1–16. https://doi.org/10.1186/s13662-021-03261-8 doi: 10.1186/s13662-021-03261-8
    [20] T. Abdeljawad, S. Rashid, H. Khan, Y. M. Chu, New Hermite-Hadamard-type inequalities for-convex fuzzy-interval-valued functions, Adv. Differ. Equ., 1 (2021), 1–20. https://doi.org/10.1186/s13662-020-02782-y doi: 10.1186/s13662-020-02782-y
    [21] M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, On new fractional integral inequalities for p-convexity within interval-valued functions, Adv. Differ. Equ., 1 (2020), 1–17. https://doi.org/10.1186/s13662-021-03245-8 doi: 10.1186/s13662-021-03245-8
    [22] G. Sana, M. B. Khan, M. A. Noor, Y. M. Chu, Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://doi.org/10.2991/ijcis.d.210620.001 doi: 10.2991/ijcis.d.210620.001
    [23] M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 1 (2021), 1401–1418. https://dx.doi.org/10.2991/ijcis.d.210409.001 doi: 10.2991/ijcis.d.210409.001
    [24] T. Saeed, W. Afzal, K. Shabbir, S. Treanţă, M. D. Sen, Some novel estimates of Hermite-Hadamard and Jensen type inequalities for $(h_1, h_2)$-convex functions pertaining to total order relation, Mathematics, 10 (2022), 4777. https://doi.org/10.3390/math10244777 doi: 10.3390/math10244777
    [25] T. Saeed, W. Afzal, M. Abbas, S. Treanţă, M. D. Sen, Some new generalizations of integral inequalities for harmonical $cr$-$(h_1, h_2)$-Godunova Levin functions and applications, Mathematics, 10 (2022), 4540. https://doi.org/10.3390/math10234540 doi: 10.3390/math10234540
    [26] V. Stojiljkovic, Hermite Hadamard type inequalities involving $(kp)$ fractional operator with ($\alpha$, h- m)- p convexity, Eur. J. Pure. Appl. Math., 16 (2023), 503–522. https://doi.org/10.29020/nybg.ejpam.v16i1.4689 doi: 10.29020/nybg.ejpam.v16i1.4689
    [27] V. Stojiljkovic, A new conformable fractional derivative and applications, Seleccion. Mat., 9 (2022), 370–380. http://dx.doi.org/10.17268/sel.mat.2022.02.12 doi: 10.17268/sel.mat.2022.02.12
    [28] G. Mani, R. Ramaswamy, A. J. Gnanaprakasam, V. Stojiljkovic, Z. M. Fadail, S. Radenovic, Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space, AIMS Math., 8 (2023), 3269–3285. http://dx.doi.org/2010.3934/math.2023168
    [29] V. Stojiljković, R. Ramaswamy, O. A. A. Abdelnaby, S. Radenovic, Riemann-Liouville fractional inclusions for convex functions using interval valued setting, Mathematics, 10 (2022), 3491. https://doi.org/10.3390/math10193491 doi: 10.3390/math10193491
    [30] W. Afzal, K. Shabbir, S. Treanţă, K. Nonlaopon, Jensen and Hermite-Hadamard type inclusions for harmonical h-Godunova-Levin functions, AIMS Math., 8 (2022), 3303–3321. https://doi.org/10.3934/math.2023170 doi: 10.3934/math.2023170
    [31] K. Nikodem, On convex stochastic processes, Aequationes Math., 2 (1998), 427–446. https://dx.doi.org/10.1007/BF02190513 doi: 10.1007/BF02190513
    [32] M. Shaked, J. G. Shanthikumar, Stochastic convexity and its applications, Adv. Appl. Probab., 1 (1980), 184–197. https://dx.doi.org/10.1006ADA170112
    [33] A. Skowronski, On some properties of $j$-convex stochastic processes, Aequationes Math., 2 (1992), 249–258. https://dx.doi.org/10.1007/BF01830983 doi: 10.1007/BF01830983
    [34] D. Kotrys, Hermite-Hadamard inequality for convex stochastic processes, Aequationes Math., 83 (2012), 143–151. https://dx.doi.org/10.1007/s00010-011-0090-1 doi: 10.1007/s00010-011-0090-1
    [35] S. Varoşanec, On $h-$convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://dx.doi.org/10.1016/j.jmaa.2006.02.086
    [36] D. Barraez, L. Gonzalez, N. Merentes, On $h$-convex stochastic processes, Math. Aeterna, 5 (2015), 571–581.
    [37] J. El-Achky, S. Taoufiki, On $(p-h)$-convex stochastic processes, J. Interdiscip. Math., 2 (2022), 1–12. https://doi.org/10.1080/09720502.2021.1938994 doi: 10.1080/09720502.2021.1938994
    [38] W. Afzal, T. Botmart, Some novel estimates of Jensen and Hermite-Hadamard inequalities for $h$-Godunova-Levin stochastic processes, AIMS Math., 8 (2023), 7277–7291. https://doi.org/10.3934/math.2023366 doi: 10.3934/math.2023366
    [39] M. Vivas-Cortez, M. S. Saleem, S. Sajid, Fractional version of Hermite-Hadamard-Mercer inequalities for convex stochastic processes via $\Psi_k$-Riemann-Liouville fractional integrals and its applications, Appl. Math., 16 (2022), 695–709. http://dx.doi.org/10.18576/amis/22nuevoformat20(1)2 doi: 10.18576/amis/22nuevoformat20(1)2
    [40] W. Afzal, E. Y. Prosviryakov, S. M. El-Deeb, Y. Almalki, Some new estimates of HermiteHadamard, Ostrowski and Jensen-type inclusions for $h$-convex stochastic process via interval-valued functions, Symmetry., 15 (2023), 831. https://doi.org/10.3390/sym15040831 doi: 10.3390/sym15040831
    [41] J. El-Achky, D. Gretete, M. Barmaki, Inequalities of Hermite-Hadamard type for stochastic process whose fourth derivatives absolute are quasi-convex, $P$-convex, $s$-convex and $h$-convex, J. Interdiscip. Math., 3 (2021), 1–17. https://doi.org/10.1080/09720502.2021.1887607 doi: 10.1080/09720502.2021.1887607
    [42] N. Sharma, R. Mishra, A. Hamdi, Hermite-Hadamard type integral inequalities for multidimensional general $h$-harmonic preinvex stochastic processes, Commun. Stat.-Theor. M., 4 (2020), 1–41. https://doi.org/10.1080/03610926.2020.1865403 doi: 10.1080/03610926.2020.1865403
    [43] H. Zhou, M. S. Saleem, M. Ghafoor, J. Li, Generalization of-convex stochastic processes and some classical inequalities, Math. Probl. Eng., 2020 (2020), 1583807. https://doi.org/10.1155/2020/1583807 doi: 10.1155/2020/1583807
    [44] W. Afzal, S. M. Eldin, W. Nazeer, A. M. Galal, Some integral inequalities for harmonical $cr$-$h$-Godunova-Levin stochastic processes, AIMS Math., 8 (2023), 13473–13491. https://doi.org/10.3934/math.2023683 doi: 10.3934/math.2023683
    [45] H. Budak, M. Z. Sarikaya, On generalized stochastic fractional integrals and related inequalities, Theor. Appl., 5 (2018), 471–481. https://doi.org/10.15559/18-VMSTA117 doi: 10.15559/18-VMSTA117
    [46] M. Tunc, Ostrowski-type inequalities via h-convex functions with applications to special means, J. Inequal. Appl., 1 (2013), 1–10. https://doi.org/10.1186/1029-242X-2013-326 doi: 10.1186/1029-242X-2013-326
    [47] L. Gonzales, J. Materano, M. V. Lopez, Ostrowski-type inequalities via h-convex stochastic processes, JP J. Math. Sci., 6 (2013), 15–29.
    [48] A. K. Bhunia, S. S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169–178. https://doi.org/10.3390/math10122089 doi: 10.3390/math10122089
    [49] W. Liu, F. Shi, G. Ye, D. Zhao, The properties of harmonically $cr$-$h$-convex function and its applications, Mathematics, 10 (2022), 2089. https://doi.org/10.1016/j.cie.2014.05.014 doi: 10.1016/j.cie.2014.05.014
    [50] W. Afzal, M. Abbas, J. E. Macias-Diaz, S. Treanţă, Some H-Godunova-Levin unction inequalities using center radius (Cr) order, Fractal Fract., 6 (2022), 518. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518
    [51] W. Afzal, W. Nazeer, T. Botmart, S. Treanţă, Some properties and inequalities for generalized class of harmonical Godunova-Levin function via center radius order relation, AIMS Math., 8 (2023), 1696–1712. https://doi.org/10.3934/math.2023087 doi: 10.3934/math.2023087
    [52] W. Afzal, K. Shabbir, T. Botmart, S. Treanţă, Some new estimates of well known inequalities for $(h_1, h_2)$-Godunova-Levin functions by means of center-radius order relation, AIMS Math., 8 (2022), 3101–3119. https://doi.org/10.3934/math.2023160 doi: 10.3934/math.2023160
    [53] P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math., 37 (2004), 299–308. https://doi.org/10.3390/fractalfract6090518 doi: 10.3390/fractalfract6090518
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1095) PDF downloads(66) Cited by(11)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog