Research article Special Issues

Boundedness of some operators on grand Herz spaces with variable exponent

  • Received: 18 November 2022 Revised: 25 February 2023 Accepted: 17 March 2023 Published: 31 March 2023
  • MSC : 46E30, 47B38

  • Our aim in this paper is to prove boundedness of an intrinsic square function and higher order commutators of fractional integrals on grand Herz spaces with variable exponent $ {\dot{K} ^{a(\cdot), u), \theta}_{ s(\cdot)}(\mathbb{R}^n)} $ by applying some properties of variable exponent.

    Citation: Mehvish Sultan, Babar Sultan, Ahmad Aloqaily, Nabil Mlaiki. Boundedness of some operators on grand Herz spaces with variable exponent[J]. AIMS Mathematics, 2023, 8(6): 12964-12985. doi: 10.3934/math.2023653

    Related Papers:

  • Our aim in this paper is to prove boundedness of an intrinsic square function and higher order commutators of fractional integrals on grand Herz spaces with variable exponent $ {\dot{K} ^{a(\cdot), u), \theta}_{ s(\cdot)}(\mathbb{R}^n)} $ by applying some properties of variable exponent.



    加载中


    [1] B. Sultan, F. M. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of fractional integrals on grand weighted Herz-Morrey spaces with variable exponent, Fractal Fract., 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
    [2] B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M. A. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
    [3] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, Birkhuser, 2016. https://doi.org/10.1007/978-3-319-21018-6
    [4] B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz potential operator on grand Herz-Morrey spaces, Axioms, 11 (2022), 583. https://doi.org/10.3390/axioms11110583 doi: 10.3390/axioms11110583
    [5] A. Hussain, M. Asim, F. Jarad, Variable $\lambda$-central Morrey space estimates for the fractional Hardy operators and commutators, J. Math., 2022 (2022), 5855068. https://doi.org/10.1155/2022/5855068 doi: 10.1155/2022/5855068
    [6] M. Asim, A. Hussain, Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inequal. Appl., 2022 (2022), 2. https://doi.org/10.1186/s13660-021-02739-z doi: 10.1186/s13660-021-02739-z
    [7] A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. Space., 2021 (2021), 9705250. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
    [8] K. P. Ho, Intrinsic square functions on Morrey and block spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 40 (2017), 995–1010. https://doi.org/10.1007/s40840-016-0330-6 doi: 10.1007/s40840-016-0330-6
    [9] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
    [10] M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponents, Math. Sci. Res. J., 13 (2009), 243–253.
    [11] S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10 (2013), 2007–2025. https://doi.org/10.1007/s00009-013-0285-x doi: 10.1007/s00009-013-0285-x
    [12] A Meskhi, Integral operators in grand Morrey spaces, 2010, arXiv: 1007.1186.
    [13] H. Nafis, H. Rafeiro, M. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 2020 (2020), 1. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6
    [14] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czech. Math. J., 41 (1991), 592–618.
    [15] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Perez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. M., 31 (2006), 239–264.
    [16] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Berlin: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [17] A. Ajaib, A. Hussain, Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group, Open Math., 18 (2020), 496–511. https://doi.org/10.1515/math-2020-0175 doi: 10.1515/math-2020-0175
    [18] A. Hussain, A. Ajaib, Some results for the commutators of generalized Hausdorff operator, J. Math. Inequal., 13 (2019), 1129–1146. https://doi.org/10.7153/jmi-2019-13-80 doi: 10.7153/jmi-2019-13-80
    [19] W. L. Jiang, W. J. Zhao, Boundedness for higher order commutators of fractional integrals on variable exponent Herz-Morrey spaces, Mediterr. J. Math., 14 (2017), 198. https://doi.org/10.1007/s00009-017-1002-y doi: 10.1007/s00009-017-1002-y
    [20] H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of the Marcinkiewicz integral on grand Herz spaces, J. Math. Inequal., 15 (2021), 739–753. https://doi.org/10.7153/jmi-2021-15-52 doi: 10.7153/jmi-2021-15-52
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1471) PDF downloads(154) Cited by(14)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog