Research article Special Issues

Optimistic multigranulation roughness of a fuzzy set based on soft binary relations over dual universes and its application

  • Received: 06 December 2022 Revised: 05 February 2023 Accepted: 06 February 2023 Published: 28 February 2023
  • MSC : 03B52, 68T27

  • A fascinating extension of Pawlak rough set theory to handle uncertainty is multigranulation roughness, which has been researched by several researchers over dual universes. In light of this, we proposed a novel optimistic multigranulation roughness of a fuzzy set based on soft binary relations over dual universes and established two types of approximations of a fuzzy set with respect to forsets and aftersets of the finite number of soft binary relations in this article. We obtain two sets of fuzzy soft sets in this way, referred to as the lower approximation and upper approximation with respect to the aftersets and the foresets, respectively. Next, we look into some of the lower and higher approximations of the newly multigranulation rough set model's algebraic properties. Both the roughness and accuracy measurements were defined. In order to show our suggested model, we first develop a decision-making algorithm. Then, we give an example from a variety of applications.

    Citation: Jamalud Din, Muhammad Shabir, Nasser Aedh Alreshidi, Elsayed Tag-eldin. Optimistic multigranulation roughness of a fuzzy set based on soft binary relations over dual universes and its application[J]. AIMS Mathematics, 2023, 8(5): 10303-10328. doi: 10.3934/math.2023522

    Related Papers:

  • A fascinating extension of Pawlak rough set theory to handle uncertainty is multigranulation roughness, which has been researched by several researchers over dual universes. In light of this, we proposed a novel optimistic multigranulation roughness of a fuzzy set based on soft binary relations over dual universes and established two types of approximations of a fuzzy set with respect to forsets and aftersets of the finite number of soft binary relations in this article. We obtain two sets of fuzzy soft sets in this way, referred to as the lower approximation and upper approximation with respect to the aftersets and the foresets, respectively. Next, we look into some of the lower and higher approximations of the newly multigranulation rough set model's algebraic properties. Both the roughness and accuracy measurements were defined. In order to show our suggested model, we first develop a decision-making algorithm. Then, we give an example from a variety of applications.



    加载中


    [1] M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
    [2] M. I. Ali, A note on soft sets, rough soft sets and fuzzy soft sets, Appl. Soft Comput., 11 (2011), 3329–3332. https://doi.org/10.1016/j.asoc.2011.01.003 doi: 10.1016/j.asoc.2011.01.003
    [3] A. Ali, M. I. Ali, N. Rehman, New types of dominance based multi-granulation rough sets and their applications in conflict analysis problems, J. Intell. Fuzzy Syst., 35 (2018), 3859–3871. https://doi.org/10.3233/JIFS-18757 doi: 10.3233/JIFS-18757
    [4] S. Ayu, W. Mahmood, M. Shabir, A. N. Koam, R. Gul, A study on soft multigranulation rough sets and their applications, IEEE Access, 10 (2022). https://doi.org/10.1109/ACCESS.2022.3218695 doi: 10.1109/ACCESS.2022.3218695
    [5] M. Akram, F. Zafar, Multi-criteria decision-making methods under soft rough fuzzy knowledge, J. Intell. Fuzzy Syst., 35 (2018), 3507–3528. https://doi.org/10.3233/JIFS-18017 doi: 10.3233/JIFS-18017
    [6] N. Bhardwaj, P. Sharma, An advanced uncertainty measure using fuzzy soft sets: Application to decision-making problems, Big Data Min. Anal., 4 (2021), 94–103. https://doi.org/10.26599/BDMA.2020.9020020 doi: 10.26599/BDMA.2020.9020020
    [7] R. Chattopadhyay, P. P. Das, S. Chakraborty, Development of a rough-MABAC-DoE-based metamodel for supplier selection in an iron and steel industry, Oper. Res. Eng. Sci. Theor. Appl., 5 (2022), 20–40. https://doi.org/10.31181/oresta190222046c doi: 10.31181/oresta190222046c
    [8] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209.
    [9] E. Durmić, Z. Stević, P. Chatterjee, M. Vasiljević, M. Tomašević, Sustainable supplier selection using combined FUCOM-Rough SAW model, Rep. Mech. Eng., 1 (2020), 34–43. https://doi.org/10.31181/rme200101034c doi: 10.31181/rme200101034c
    [10] J. Din, M. Shabir, Y. Wang, Pessimistic multigranulation roughness of a fuzzy set based on soft binary relations over dual universes and its application, Mathematics, 10 (2022), 541. https://doi.org/10.3390/math10040541 doi: 10.3390/math10040541
    [11] J. Din, M. Shabir, S. B. Belhaouari, A novel pessimistic multigranulation roughness by soft relations over dual universe, AIMS Math., 8 (2023), 7881–7898. https://doi.org/10.3934/math.2023397 doi: 10.3934/math.2023397
    [12] E. S. T. E. Din, H. Anis, M. Abouelsaad, A probabilistic approach to exposure assessment of power lines electric field, IEEE T. Power Deliver., 20 (2005), 887–893. https://doi.org/10.1109/TPWRD.2005.844268 doi: 10.1109/TPWRD.2005.844268
    [13] E. T. Eldin, A new algorithm for the classification of different transient phenomena in power transformers combining wavelet transforms and fuzzy logic, In 2003 46th Midwest Symposium on Circuits and Systems, IEEE, 3 (2003), 1116–1121.
    [14] F. Feng, M. I. Ali, M. Shabir, Soft relations applied to semigroups, Filomat, 27 (2013), 1183–1196. https://doi.org/10.2298/FIL1307183F doi: 10.2298/FIL1307183F
    [15] Z. Fariha, M. Akram, A novel decision making method based on rough fuzzy information, Int. J. Fuzzy Syst., 20 (2018), 1000–1014. https://doi.org/10.1007/s40815-017-0368-0 doi: 10.1007/s40815-017-0368-0
    [16] F. Feng, C. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: A tentative approach, Soft Comput., 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6
    [17] F. Feng, Y. B. Jun, X. Liu, L. Li, An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math., 234 (2010), 10–20. https://doi.org/10.1016/j.cam.2009.11.055 doi: 10.1016/j.cam.2009.11.055
    [18] J. Hou, Grey relational analysis method for multiple attribute decision making in intuitionistic fuzzy setting, J. Converg. Inf. Technol., 5 (2010), 194–199. https://doi.org/10.4156/jcit.vol5.issue10.25 doi: 10.4156/jcit.vol5.issue10.25
    [19] B. Huang, C. X. Guo, Y. L. Zhuang, H. X. Li, X. Z. Zhou, Intuitionistic fuzzy multigranulation rough sets, Inform. Sci., 277 (2014), 299–320. https://doi.org/10.1016/j.ins.2014.02.064 doi: 10.1016/j.ins.2014.02.064
    [20] S. S. Kumar, H. H. Inbarani, Optimistic multi-granulation rough set based classification for medical diagnosis, Proced. Comput. Sci., 47 (2015), 374–382. https://doi.org/10.1016/j.procs.2015.03.219 doi: 10.1016/j.procs.2015.03.219
    [21] M. J. Khan, P. Kumam, W. Deebani, W. Kumam, Z. Shah, Distance and similarity measures for spherical fuzzy sets and their applications in selecting mega projects, Mathematics, 8 (2020), 519. https://doi.org/10.3390/math8040519 doi: 10.3390/math8040519
    [22] M. J. Khan, , P. Kumam, N. A. Alreshidi, N. Shaheen, W. Kumam, Z. Shah, P. Thounthong, The renewable energy source selection by remoteness index-based VIKOR method for generalized intuitionistic fuzzy soft sets, Symmetry, 12 (2020), 977. https://doi.org/10.3390/sym12060977 doi: 10.3390/sym12060977
    [23] Z. Li, N. Xie, N. Gao, Rough approximations based on soft binary relations and knowledge bases, Soft Comput., 21 (2017), 839–852. https://doi.org/10.1007/s00500-016-2077-2 doi: 10.1007/s00500-016-2077-2
    [24] G. Liu, Rough set theory based on two universal sets and its applications, Knowl.-Based Syst., 23 (2010), 110–115. https://doi.org/10.1016/j.knosys.2009.06.011 doi: 10.1016/j.knosys.2009.06.011
    [25] C. Liu, D. Miao, N. Zhang, Graded rough set model based on two universes and its properties, Knowl.-Based Syst., 33 (2012), 65–72. https://doi.org/10.1016/j.knosys.2012.02.012 doi: 10.1016/j.knosys.2012.02.012
    [26] Z. Li, N. Xie, N. Gao, Rough approximations based on soft binary relations and knowledge bases, Soft Comput., 21 (2017), 839–852. https://doi.org/10.1007/s00500-016-2077-2 doi: 10.1007/s00500-016-2077-2
    [27] G. Lin, Y. Qian, J. Li, NMGRS: Neighborhood-based multigranulation rough sets. Int. J. Approx. Reason., 53 (2012), 1080–1093. https://doi.org/10.1016/j.ijar.2012.05.004 doi: 10.1016/j.ijar.2012.05.004
    [28] C. Liu, D. Miao, J. Qian, On multi-granulation covering rough sets, Int. J. Approx. Reason., 55 (2014), 1404–1418. https://doi.org/10.1016/j.ijar.2014.01.002 doi: 10.1016/j.ijar.2014.01.002
    [29] W. Ma, B. Sun, Probabilistic rough set over two universes and rough entropy, Int. J. Approx. Reason., 53 (2012), 608–619. https://doi.org/10.1016/j.ijar.2011.12.010 doi: 10.1016/j.ijar.2011.12.010
    [30] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2012), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
    [31] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
    [32] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math., 9 (2001) 589–602.
    [33] D. Molodtsov, Soft set theory—first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [34] D. Meng, X. Zhang, K. Qin, Soft rough fuzzy sets and soft fuzzy rough sets, Comput. Math. Appl., 62 (2011), 4635–4645. https://doi.org/10.1016/j.camwa.2011.10.049 doi: 10.1016/j.camwa.2011.10.049
    [35] T. Mahmood, Z. Ali, Fuzzy superior mandelbrot sets, Soft Comput., 26 (2022), 9011–9020. https://doi.org/10.1007/s00500-022-07254-x doi: 10.1007/s00500-022-07254-x
    [36] T. Mahmood, Z. Ali, A. Gumaei, Interdependency of complex fuzzy neighborhood operators and derived complex fuzzy coverings, IEEE Access, 9 (2021), 73506–73521. https://doi.org/10.1109/ACCESS.2021.3074590 doi: 10.1109/ACCESS.2021.3074590
    [37] Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [38] Z. Pawlak, Rough sets: Theoretical aspects of reasoning about data, Kluwer Academic Publisher, 1991.
    [39] Y. Qian, J. Liang, Y. Yao, C. Dang, MGRS: A multi-granulation rough set, Inform. Sci., 180 (2010), 949–970. https://doi.org/10.1016/j.ins.2009.11.023 doi: 10.1016/j.ins.2009.11.023
    [40] A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math., 203 (2007), 412–418. https://doi.org/10.1016/j.cam.2006.04.008 doi: 10.1016/j.cam.2006.04.008
    [41] M. Shabir, M. I. Ali, T. Shaheen, Another approach to soft rough sets, Knowl.-Based Syst., 40 (2013), 72–80. https://doi.org/10.1016/j.knosys.2012.11.012 doi: 10.1016/j.knosys.2012.11.012
    [42] M. Shabir, R. S. Kanwal, M. I. Ali, Reduction of an information system, Soft Comput., 2019, 1–13.
    [43] M. Shabir, J. Din, I. A. Ganie, Multigranulation roughness based on soft relations, J. Intell. Fuzzy Syst., 40 (2021), 10893–10908. https://doi.org/10.3233/JIFS-201910 doi: 10.3233/JIFS-201910
    [44] B. Sun, W. Ma, Multigranulation rough set theory over two universes, J. Intell. Fuzzy Syst., 28 (2013), 1251–1269. https://doi.org/10.3233/IFS-141411 doi: 10.3233/IFS-141411
    [45] B. Sun, W. Ma, X. Xiao, Three-way group decision making based on multigranulation fuzzy decision-theoretic rough set over two universes, Int. J. Approx. Reason., 81 (2017), 87–102. https://doi.org/10.1016/j.ijar.2016.11.001 doi: 10.1016/j.ijar.2016.11.001
    [46] B. Sun, W. Ma, Y. Qian, Multigranulation fuzzy rough set over two universes and its application to decision making, Knowl.-Based Syst., 123 (2017), 61–74. https://doi.org/10.1016/j.knosys.2017.01.036 doi: 10.1016/j.knosys.2017.01.036
    [47] B. Sun, W. Ma, X. Chen, X. Zhang, Multigranulation vague rough set over two universes and its application to group decision making, Soft Comput., 23 (2019), 8927–8956. https://doi.org/10.1007/s00500-018-3494-1 doi: 10.1007/s00500-018-3494-1
    [48] B. Sun, X. Zhou, N. Lin, Diversified binary relation-based fuzzy multigranulation rough set over two universes and application to multiple attribute group decision making, Inform. Fusion, 55 (2020), 91–104. https://doi.org/10.1016/j.inffus.2019.07.013 doi: 10.1016/j.inffus.2019.07.013
    [49] R. Sahu, S. R. Dash, S. Das, Career selection of students using hybridized distance measure based on picture fuzzy set and rough set theory, Decis. Mak. Appl. Manag. Eng., 4 (2021), 104–126. https://doi.org/10.31181/dmame2104104s doi: 10.31181/dmame2104104s
    [50] H. K. Sharma, A. Singh, D. Yadav, S. Kar, Criteria selection and decision making of hotels using Dominance Based Rough Set Theory, Oper. Res. Eng. Sci. Theor. Appl., 5 (2022), 41–55. https://doi.org/10.31181/oresta190222061s doi: 10.31181/oresta190222061s
    [51] E. E. S. Tag, Fault location for a series compensated transmission linebased on wavelet transform and an adaptive neuro-fuzzy inference system, In Electric Power Quality and Supply Reliability Conference (PQ), 2010,229–236.
    [52] A. Tan, W. Z. Wu, S. Shi, S. Zhao, Granulation selection and decision making with multigranulation rough set over two universes, Int. J. Mach. Learn. Cyb., 10 (2019), 2501–2513. https://doi.org/10.1007/s13042-018-0885-7 doi: 10.1007/s13042-018-0885-7
    [53] W. Z. Wu, J. S. Mi, W. X. Zhang, Generalized fuzzy rough sets, Inform. Sci., 151 (2003), 263–282. https://doi.org/10.1016/S0020-0255(02)00379-1 doi: 10.1016/S0020-0255(02)00379-1
    [54] W. Xu, W. Sun, Y. Liu, W. Zhang, Fuzzy rough set models over two universes, Int. J. Mach. Learn. Cyb., 4 (2013), 631–645. https://doi.org/10.1007/s13042-012-0129-1 doi: 10.1007/s13042-012-0129-1
    [55] W. Xu, X. Zhang, W. Zhang, Two new types of multiple granulation rough set, Int. Scholar. Res. Notices, 2013. https://doi.org/10.1155/2013/791356 doi: 10.1155/2013/791356
    [56] W. Xu, Q. Wang, X. Zhang, Multi-granulation fuzzy rough sets in a fuzzy tolerance approximation space, Int. J. Fuzzy Syst., 13 (2011).
    [57] W. Xu, Q. Wang, S. Luo, Multi-granulation fuzzy rough sets, J. Intell. Fuzzy Syst., 26 (2014), 1323–1340. https://doi.org/10.3233/IFS-130818 doi: 10.3233/IFS-130818
    [58] X. Yang, T.Y. Lin, J. Yang, Y. Li, D. Yu, Combination of interval-valued fuzzy set and soft set, Comput. Math. Appl., 58 (2009), 521–527. https://doi.org/10.1016/j.camwa.2009.04.019 doi: 10.1016/j.camwa.2009.04.019
    [59] R. Yan, J. Zheng, J. Liu, Y. Zhai, Research on the model of rough set over dual-universes, Knowl.-Based Syst., 23 (2010), 817–822. https://doi.org/10.1016/j.knosys.2010.05.006 doi: 10.1016/j.knosys.2010.05.006
    [60] X. B. Yang, X. N. Song, H. L. Dou, J. Y. Yang, Multi-granulation rough set: From crisp to fuzzy case, Ann. Fuzzy Math. Inform., 1 (2011), 55–70.
    [61] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [62] H. Y. Zhang, W. X. Zhang, W. Z. Wu, On characterization of generalized interval-valued fuzzy rough sets on two universes of discourse, Int. J. Approx. Reason., 51 (2009), 56–70. https://doi.org/10.1016/j.ijar.2009.07.002 doi: 10.1016/j.ijar.2009.07.002
    [63] K. Zhang, J. Zhan, W. Z. Wu, Novel fuzzy rough set models and corresponding applications to multi-criteria decision-making, Fuzzy Set. Syst., 383 (2020), 92–126. https://doi.org/10.1016/j.fss.2019.06.019 doi: 10.1016/j.fss.2019.06.019
    [64] C. Zhang, D. Li, R. Ren, Pythagorean fuzzy multigranulation rough set over two universes and its applications in merger and acquisition, Int. J. Intell. Syst., 31 (2016), 921–943. https://doi.org/10.1002/int.21811 doi: 10.1002/int.21811
    [65] C. Zhang, D. Li, Y. Mu, D. Song, An interval-valued hesitant fuzzy multigranulation rough set over two universes model for steam turbine fault diagnosis, Appl. Math. Model., 42 (2017), 693–704. https://doi.org/10.1016/j.apm.2016.10.048 doi: 10.1016/j.apm.2016.10.048
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1256) PDF downloads(62) Cited by(1)

Article outline

Figures and Tables

Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog