Research article

Stability analysis and optimal control for leaf brown spot disease of rice

  • Received: 04 December 2022 Revised: 06 February 2023 Accepted: 10 February 2023 Published: 20 February 2023
  • MSC : 34D20, 34D23

  • Leaf brown spot, caused by fungi, is a terrible plant disease, and it can significantly reduce the quality and quantity of rice. In this paper, we developed the model based on leaf brown spot disease development and considered a preventive treatment using botanical fungicide. In addition, we develop a model with suitable optimal control strategies. The result shows disease-free equilibrium is asymptotically stable when $R_0>1$. In contrast, the endemic equilibrium is asymptotically stable when $R_0 > 1$. The obtained optimal control to can reduce the number of infected plants compared to that without control. In addition, the analytical results were confirmed by numerical simulations of the occurrence of the theoretical results.

    Citation: Suprawee Lertnaweephorn, Usa Wannasigha Humphries, Amir Khan. Stability analysis and optimal control for leaf brown spot disease of rice[J]. AIMS Mathematics, 2023, 8(4): 9602-9623. doi: 10.3934/math.2023485

    Related Papers:

  • Leaf brown spot, caused by fungi, is a terrible plant disease, and it can significantly reduce the quality and quantity of rice. In this paper, we developed the model based on leaf brown spot disease development and considered a preventive treatment using botanical fungicide. In addition, we develop a model with suitable optimal control strategies. The result shows disease-free equilibrium is asymptotically stable when $R_0>1$. In contrast, the endemic equilibrium is asymptotically stable when $R_0 > 1$. The obtained optimal control to can reduce the number of infected plants compared to that without control. In addition, the analytical results were confirmed by numerical simulations of the occurrence of the theoretical results.



    加载中


    [1] N. Anggriani, M. Mardiyah, N. Istifadah, A. K. Supriatna, Optimal control issues in plant disease with host demographic factor and botanical fungicides, IOP Conf. Ser., 332 (2018), 012036. https://doi.org/10.1088/1757-899X/332/1/012036 doi: 10.1088/1757-899X/332/1/012036
    [2] S. Lertnaweephorn, U. Humphries, A mathematical model for leaf brown spot disease of rice with standard incidence rate, Chinag Mai J. Sci., 48 (2021), 931–941.
    [3] P. Valarmathi, D. Ladhalakshmi, Morphological characterization of Bipolaris oryzae causing brown spot disease of rice, Int. J. Curr. Microbiol. Appl. Sci., 7 (2018), 161–170. https://doi.org/10.20546/IJCMAS.2018.702.021 doi: 10.20546/IJCMAS.2018.702.021
    [4] W. Windarto, K. M. Putri, A maize foliar disease mathematical model with standard incidence rate, IOP Conf. Ser., 546 (2019), 052085. https://doi.org/10.1088/1757-899X/546/5/052085 doi: 10.1088/1757-899X/546/5/052085
    [5] S. Lenhart, J. T. Workman, Optimal control applied to biological models, Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781420011418
    [6] M. K. Barnwal, A. Kotasthane, N. Magculia, P. K. Mukherjee, S. Savary, A. K. Sharma, et al., A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities and knowledge gaps, Eur. J. Plant Pathol., 136 (2013), 443–457. https://doi.org/10.1007/s10658-013-0195-6 doi: 10.1007/s10658-013-0195-6
    [7] N. Anggriani, L. N. Putri, A. K. Supriatna, Stability analysis and optimal control of plant fungal epidemic: an explicit model with curative factor, AIP Conf. Proc., 1651 (2015), 40–47. https://doi.org/10.1063/1.4914430 doi: 10.1063/1.4914430
    [8] M. F. Ahmed, K. M. Khalequzzaman, M. N. Islam, M. K. Anam, Effect of fungicides against Bipolaris oryzae of rice under in vitro condition, Plant Pathol. J., 2002. https://doi.org/10.3923/ppj.2002.4.7 doi: 10.3923/ppj.2002.4.7
    [9] W. Suryaningrat, N. Anggriani, A. K. Supriatna, N. Istifadah, The optimal control of rice tungro disease with insecticide and biological agent, AIP Conf. Proc., 2264 (2020), 040002. https://doi.org/10.1063/5.0023569 doi: 10.1063/5.0023569
    [10] T. Hussain, A. Aslam, M. Ozair, F. Tasneem, J. F. Gómez-Aguilar, Dynamical aspects of pine wilt disease and control measures, Chaos Solitons Fract., 145 (2021), 110764. https://doi.org/10.1016/j.chaos.2021.110764 doi: 10.1016/j.chaos.2021.110764
    [11] M. Masoumnezhad, M. Rajabi, A. Chapnevis, A. Dorofeev, S. Shateyi, N. S. Kargar, et al., An approach for the global stability of mathematical model of an infectious disease, Symmetry, 12 (2020), 1778. https://doi.org/10.3390/sym12111778 doi: 10.3390/sym12111778
    [12] H. T. Alemneh, A. S. Kassa, A. A. Godana, An optimal control model with cost effectiveness analysis of Maize streak virus disease in maize plant, Infect. Dis. Modell., 6 (2021), 169–182. https://doi.org/10.1016/j.idm.2020.12.001 doi: 10.1016/j.idm.2020.12.001
    [13] A. M. A. El-Sayed, S. Z. Rida, Y. A. Gaber, Dynamical of curative and preventive treatments in a two-stage plant disease model of fractional order, Chaos Solitons Fract., 137 (2020), 109879. https://doi.org/10.1016/j.chaos.2020.109879 doi: 10.1016/j.chaos.2020.109879
    [14] A. Khan, R. Zarin, M. Inc, G. Zaman, B. Almohsen, Stability analysis of leishmania epidemic model with harmonic mean type incidence rate, Eur. Phys. J. Plus, 135 (2020), 1–20. https://doi.org/10.1140/epjp/s13360-020-00535-0 doi: 10.1140/epjp/s13360-020-00535-0
    [15] G. Ur Rahman, K. Shah, F. Haq, N. Ahmad, Host vector dynamics of pine wilt disease model with convex incidence rate, Chaos Solitons Fract., 113 (2018), 31–39. https://doi.org/10.1016/j.chaos.2018.05.010 doi: 10.1016/j.chaos.2018.05.010
    [16] P. van den Driessche, J. Watmough, Reproduction number and sub-threshold endemic equilbria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–38. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [17] J. W. Rogers, Locations of roots of polynomials, SIAM Rev., 25 (1983), 327–342. https://doi.org/10.1137/1025075 doi: 10.1137/1025075
    [18] L. D. Wang, J. Q. Li, Global stability of an epidemic model with nonlinear incidence rate and differential infectivity, Appl. Math. Comput., 161 (2005), 769–778. https://doi.org/10.1016/j.amc.2003.12.121 doi: 10.1016/j.amc.2003.12.121
    [19] F. Brauer, P. van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci., 171 (2001), 143–154. https://doi.org/10.1016/S0025-5564(01)00057-8 doi: 10.1016/S0025-5564(01)00057-8
    [20] G. Li, W. Wang, Z. Jin, Global stability of an SEIR epidemic model with constant immigration, Chaos Solitons Frac., 30 (2006), 1012–1019. https://doi.org/10.1016/j.chaos.2005.09.024 doi: 10.1016/j.chaos.2005.09.024
    [21] C. McCaig, S. Benkiranea, R. Normana, C. Shanklanda, From individual interactions: a process algebra approach to epidemiology, Stochastic Metapopul. Modell. Influenza Dyn., 2009.
    [22] S. Savary, A. Nelson, L. Willocquet, I. Pangga, J. Aunario, Modeling and mapping potential epidemics of rice diseases globally, Crop Prot., 34 (2012), 6–17. https://doi.org/10.1016/j.cropro.2011.11.009 doi: 10.1016/j.cropro.2011.11.009
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1315) PDF downloads(100) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog