Research article Special Issues

A study of the time fractional Navier-Stokes equations for vertical flow

  • Received: 29 September 2022 Revised: 31 December 2022 Accepted: 10 January 2023 Published: 07 February 2023
  • MSC : 34A07, 34A08, 60G22

  • Navier-Stokes (NS) equations dealing with gravitational force with time-fractional derivatives are discussed in this paper. These equations can be used to predict fluid velocity and pressure for a given geometry. This paper investigates the local and global existence and uniqueness of mild solutions to NS equations for the time fractional differential operator. We also work on the regularity effects of such types of equations were caused by orthogonal flow.

    Citation: Abdelkader Moumen, Ramsha Shafqat, Azmat Ullah Khan Niazi, Nuttapol Pakkaranang, Mdi Begum Jeelani, Kiran Saleem. A study of the time fractional Navier-Stokes equations for vertical flow[J]. AIMS Mathematics, 2023, 8(4): 8702-8730. doi: 10.3934/math.2023437

    Related Papers:

  • Navier-Stokes (NS) equations dealing with gravitational force with time-fractional derivatives are discussed in this paper. These equations can be used to predict fluid velocity and pressure for a given geometry. This paper investigates the local and global existence and uniqueness of mild solutions to NS equations for the time fractional differential operator. We also work on the regularity effects of such types of equations were caused by orthogonal flow.



    加载中


    [1] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-09620-9
    [2] A. Abbas, R. Shafqat, M. B. Jeelani, N. H. Alharthi, Significance of chemical reaction and Lorentz force on third-grade fluid flow and heat transfer with Darcy-Forchheimer law over an inclined exponentially stretching sheet embedded in a porous medium, Symmetry, 14 (2022), 779. https://doi.org/10.3390/sym14040779 doi: 10.3390/sym14040779
    [3] Y. Mehmood, R. Shafqat, I. E. Sarris, M. Bilal, T. Sajid, T. Akhtar, Numerical investigation of MWCNT and SWCNT fluid flow along with the activation energy effects over quartic auto catalytic endothermic and exothermic chemical reactions, Mathematics, 10 (2022), 4636. https://doi.org/10.3390/math10244636 doi: 10.3390/math10244636
    [4] A. U. K. Niazi, J. He, R. Shafqat, B. Ahmed, Existence, uniqueness, and $E_{q}$-Ulam-type stability of fuzzy fractional differential equation, Fractal Fract., 5 (2021), 66. https://doi.org/10.3390/fractalfract5030066 doi: 10.3390/fractalfract5030066
    [5] N. Iqbal, A. U. K. Niazi, R. Shafqat, S. Zaland, Existence and uniqueness of mild solution for fractional-order controlled fuzzy evolution equation, J. Funct. Space, 2021 (2021), 5795065. https://doi.org/10.1155/2021/5795065 doi: 10.1155/2021/5795065
    [6] R. Shafqat, A. U. K. Niazi, M. B. Jeelani, N. H. Alharthi, Existence and uniqueness of mild solution where $\alpha \in (1, 2)$ for fuzzy fractional evolution equations with uncertainty, Fractal Fract., 6 (2022), 65. https://doi.org/10.3390/fractalfract6020065 doi: 10.3390/fractalfract6020065
    [7] A. S. Alnahdi, R. Shafqat, A. U. K. Niazi, M. B. Jeelani, Pattern formation induced by fuzzy fractional-order model of COVID-19, Axioms, 11 (2022), 313. https://doi.org/10.3390/axioms11070313 doi: 10.3390/axioms11070313
    [8] A. Khan, R. Shafqat, A. U. K. Niazi, Existence results of fuzzy delay impulsive fractional differential equation by fixed point theory approach, J. Funct. Space, 2022 (2022), 4123949. https://doi.org/10.1155/2022/4123949 doi: 10.1155/2022/4123949
    [9] K. Abuasbeh, R. Shafqat, A. U. K. Niazi, M. Awadalla, Local and global existence and uniqueness of solution for time-fractional fuzzy Navier-Stokes equations, Fractal Fract., 6 (2022), 330. https://doi.org/10.3390/fractalfract6060330 doi: 10.3390/fractalfract6060330
    [10] K. Abuasbeh, R. Shafqat, A. U. K. Niazi, M. Awadalla, Nonlocal fuzzy fractional stochastic evolution equations with fractional Brownian motion of order (1, 2), AIMS Mathematics, 7 (2022), 19344–19358. https://doi.org/10.3934/math.20221062 doi: 10.3934/math.20221062
    [11] K. Abuasbeh, R. Shafqat, Fractional Brownian motion for a system of fuzzy fractional stochastic differential equation, J. Math., 2022 (2022), 3559035. https://doi.org/10.1155/2022/3559035 doi: 10.1155/2022/3559035
    [12] K. Abuasbeh, R. Shafqat, A. U. K. Niazi, M. Awadalla, Oscillatory behavior of solution for fractional order fuzzy neutral predator-prey system, AIMS Mathematics, 7 (2022), 20383–20400. https://doi.org/10.3934/math.20221117 doi: 10.3934/math.20221117
    [13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, 2006.
    [14] H. Komatsu, Fractional powers of operators, Pac. J. Math., 19 (1966), 285–346. https://doi.org/10.2140/pjm.1966.19.285 doi: 10.2140/pjm.1966.19.285
    [15] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [16] A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797–811. https://doi.org/10.1016/j.jmaa.2007.03.018 doi: 10.1016/j.jmaa.2007.03.018
    [17] Y. Zhou, L. Peng, On the time-fractional Navier-Stokes equations, Comput. Math. Appl., 73 (2017), 874–891. https://doi.org/10.1016/j.camwa.2016.03.026 doi: 10.1016/j.camwa.2016.03.026
    [18] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Singapore: World Scientific, 2010.
    [19] Y. Zhou, J. R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations, Singapore: World scientific, 2016.
    [20] P. M. de Carvalho Neto, Fractional differential equations: A novel study of local and global solutions in Banach spaces, Universidade de São Paulo, 2013. https://doi.org/10.11606/T.55.2013.tde-06062013-145531 doi: 10.11606/T.55.2013.tde-06062013-145531
    [21] N. Masmoudi, T. K. Wong, Local‐in‐time existence and uniqueness of solutions to the Prandtl equations by energy methods, Comm. Pure Appl. Math., 68 (2015), 1683–1741. https://doi.org/10.1002/cpa.21595 doi: 10.1002/cpa.21595
    [22] P. M. de Carvalho Neto, G. Planas, Mild solutions to the time fractional Navier-Stokes equations in RN, J. Differ. Equ., 259 (2015), 2948–2980. https://doi.org/10.1016/j.jde.2015.04.008 doi: 10.1016/j.jde.2015.04.008
    [23] H. Kozono, L1-solutions of the Navier-Stokes equations in exterior domains, Math. Ann., 312 (1998), 319–340. https://doi.org/10.1007/s002080050224 doi: 10.1007/s002080050224
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1796) PDF downloads(126) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog