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1. Introduction

To explain the flow of incompressible fluids in fluid mechanics, Navier-Stokes (NS) equations are
applied as partial differential equations in order to discuss such fluids. Such equations constitute a
modification of the equations composed by the Swiss mathematician Leonhard. In the 18th century,
Euler illustrated the movement of frictionless and incompressible fluids. For the most realistic and
challenging viscous fluid issue in 1821 Claude-Louis Navier, a French engineer, presented the element
of viscosity (friction). Sir George Gabriel Stokes, a British physicist and mathematician, expanded
this work in the mid-nineteenth century, however, comprehensive solutions have only been achieved
for the case of 2-D flows. The complex vortexes and disturbance, or disruption, that arise in 3-D fluid
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flows (including gas) as velocities rise are demonstrated to be uncontrolled for every numerical analysis
approach except approximation.

Because they characterize the physics of many scientific and engineering events, NS equations are
useful. They might be models of climate, ocean waves, water flow in a pump, or air flow. The NS
equations, in both their complete and simplified versions are applied for assistance with aviation and
automobile design, blood flow studies, the design of power plants, pollution monitoring and a variety
of other activities.

The NS equation, in modern notation for vertical flow:

p(% ; (ﬁ.V)ﬁ) = VP + uVii + pg (1.1)
where i is defined as the fluid velocity vector, P is the fluid pressure, p is the fluid density, u is the
dynamic viscosity and V? is the Laplacian operator.

The NS equations in mathematics demonstrate the conservation of speed and mass for Newtonian
fluids. Sometimes the condition applied on equation associated with stress, temperature and body
weight. They result from the application of Isaac Newton’s second law to water movement, as well
as the concept that the fluid stress is the sum of several viscous time (rate and velocity) and pressure
respectively which describes the viscous flow. The difference between Euler equations and Navier
equations is that the Euler equations model is just an inviscid flow whereas NS equations are viscosity
sensitive. For that reason, NS equations are a parabolic with improved analytical properties at the cost
of a constrained mathematical framework (for example, they are never fully integrated).

These equations are the central part of fluid flow modeling. Solving them for a set of specific
boundary conditions (entrances, exits and walls) predicts fluid velocity and pressure for a given
geometry. In view of the fact that complexity recognizes only a limited number of these equations
analytical solutions [1], it is relatively convenient, for instance, to solve these equations for a flow
between two parallel plates, or for the flow in a circular pipe. Abbas et al. [2] and Mehmood et al. [3]
solved ordinary differential equations. Niazi et al. [4], Igbal et al. [5], Shafqat et al. [6], Alnahdi
et al. [7], Khan et al. [8] and Abuasbeh et al. [9-12] investigated the existence and uniqueness of the
fuzzy fractional evolution equations.

The Cauchy problem for NS equations in incompressible fluids is given by

i —wai+ (V)i =-Vp+g, v>0,

V.ii=0
- ’ 1.2
filgo = 0, (1.2)
(v, x) = axsin(y) + bycos(y).

If the fluid strikes orthogonally, i.e., if y = g then we have

i1(0) = ax.

Therefore we have,
O —wai+ (V)i =-Vp+g, v>0,
V.ii=0
- ’ 1.3
iilgo = 0, (1.3)
(0, x) = ax,
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while 8}, denotes the fractional order Caputo derivative. At a point x € w and time v > 0 the velocity
field vector is represented by it = (ii;(v, x), ix(v, X), ..., ii,(v, X)), p = p(v, x) denotes the pressure and
v is the viscosity. The gravitational force or body force is represented by g = g(v, x) while the initial
velocity is represented by ax. First of all we assume that Q has a smooth boundary so in order to
remove the pressure term we must apply, Helmholtz-Leray projector P in 1.3, which gives

0t — wPAl + P(ii.V)it = Pg, v > 0,

Vi=0

. ’ 1.4
iilago = 0, (14
(0, x) = ax.

In the divergence-free function space under discussion, the operator —wPA under Dirichlet boundary
conditions is mainly the Stokes operator A. So, writing 1.3 in abstract form, we have

{ ‘Dli(v) = —Ait + F(ii,w) + Pg, v >0,

i(0) = ax, (1.5

where F(ii, w)=—P(i1i.V)w. If the Helmholtz-Leray projection P and the Stokes operator A makes, the
solution of (1.5) is also the solution of (1.3). The fundamental goal is to prove the existence and
uniqueness of global and local mild solutions of problem (1.5) in H”". Moreover, we also establish
the regularity conclusions which claim that if Pg is Holder continuous then there is a unique classical
solution #i(v) such that A# and cD)i(v) hold Holder continuity in J,.

2. Preliminaries

In this section, we define the Gamma function, fractional order integral, Riemann-Liouville (RL)
fractional derivative, Caputo fractional derivative and some more definitions, lemmas and theorems.
For a brief review of fractional calculus definitions and properties, see [13].

Let the half space in R", i.e., Q = H = (xy, ..., X,) : x, > 0 be the open subset of R", where n > 3.
Let 1 < r < co. Then we have the Hodge projection which is a bounded projection P on (L"(€2)"), the
range for which is as follows:

CX(H) = (v € (C(H)": Vv =0), 2.1)
and the null space of which is given as

Ve (CO(H)) :v=V.p, ¢eC(H). (2.2)

For a suitable approach, let J,=C>(H )Hr, which is closed subspace of (L"(H))", A = —vPA is the
Stokes operator in J, containing the domain D,(A) = D,(A) N J,. The Stokes operator, named George
Gabriel Stokes is an unbounded linear operator which is used in the theory of partial differential
equations and specifically in the fields of fluid dynamics and electro magnetics;

Dy(A) = v e (W (H)") : Vlgn = 0.

We have to introduce definitions of fractional power spaces that are related to —A. Fory > Oandv € J,,
define the following:
1 00
ATy = — f v e udv.
L'(y) Jo
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Therefore, A7 is bounded [14], just like the injective operator on J,. Suppose that A™ is the inverse
of A™. For y > 0 we symbolize the space H”" by the extent of A™ with the norm

Wlgrr = 1AV,

Definition 2.1. The fractional integration of order y > 0 for a function f is defined as
Lfw) = e )f (-5 f(s)ds, v>0.

The RL fractional derivative for a function v : [0, c0) — R" of order y € R" is defined by

n

LDW(v) = d—(g,l_y «*V)(v), v=>0, n-1<y<n.
Un

The RL fractional order integral is defined as

() =g, *v(v) = f (v — s "W(s)ds, vel0,T].

T()

Thus by using the definitions of the RL fractional-order integral, we construct the Caputo fractional
order differential operator.

Definition 2.2. [15] The Caputo fractional order derivative is defined as follows

d

DY) = 2 (.11 () - v(O)]) f = )7 u(s) - v(O)]ds) v> 0.

F(l— Y)

Definition 2.3. [16] The Mittag-Leffler function was introduced by Magnus Gustaf (Gosta)
Mittag-Leffler (Swedish mathematician) in 1902. It is a simple conclusion of the exponential
function. Recently, some researchers have been focusing on the Mittag-Leffler function because of its
application in the analysis of fractional differential equations (FDEs). It occurs often in the solutions

of FDEs and fractional integral equations. The Mittag-Leffler function with the one-parameter E, (¢) is
defined as

d k
v
E = —, veC, Ry >0.
() ;:o ks Y )
Now, let us consider the generalized Mittag-Lefller functions:

E,(—v"A) = f M, (s)e """ ds
0

and .
E,,(-v"A) = f ysMy(s)e_S”mds,
0

where

(o8]

(-v)
M,(v) := .
) ZO (=) + 1 )
The function M, is also known as the Mainardi function. In order to distinguish between the
fundamental solutions for some standard boundary value problems, Mainardi introduced such a type
of functions that is a special type of Wright function. It is impressive that the Mainardi function plays
arole as a bridge between the classical abstract theories and fractional theories.

AIMS Mathematics Volume 8, Issue 4, 8702—-8730.



8706

Theorem 2.1. Suppose that f, : R* — [—o00, 0] denotes (Lebesgue) measurable functions such that
the pointwise limit f(x) = lim,_, f,(x) exists. Assume that there is an integrable g : R"™ — [0, co] with
|fn(x)| < g(x) for each x € R". Then, f is integrable as is f, for each n, and

lim f fudy = f lim f,du = f fdp.
n—c Jpn n N1—00 R®

. 1 _

(1) Ey,y(—UyA) = % fl“g Ey,y(—,uzﬂ)(,ul +A) 1d,u;

. 1 -

(i) AVEy,(-v7A) = — S, By (mpo)ud + AY .
Proof. See the results in [17]. O
Lety € (0,1)and —1 < r < 0o, A > 0. Then Mainardi function possess the following properties:

(i) M,(v) >0 forall v > 0;

(o, L(r+1)

(ll) L v My(U)dU = m,
(iit) L{yvM,)}(@) = E,,(-2);

(iv) LM, ()}(z) = E,(-2);
V) Liyr "M, = e

Proof. The proof of this proposition can be found in [18]. O

Lemma 2.1. For v > 0, the operators E,(-v”A) and E, ,(—v"A) in the uniform operator topology are
continuous and well defined from X to X. Then continuity is uniform on [r, o) for every r > 0.

Lemma 2.2. [19] Let O <y < 1. Then
1) YveXlim_o E,(-V"A)y =v;
(i) Yve D) and v > 0, CDZE),(—UVA)V =-AE,(-vV"A);
(ii1) Vv e X and E(—v"A)v = —vy_lAEW(—UyA)v;
(iv) forv>0,E,(-v"Aw = I,{(0" ' E, ,(—v"A)u)}.

Lemma 2.3. Suppose that 1 < r < co and y; < y,. Then, there exist a constant C = C(y;,y>) such that
pp Y=Y Y1,V
le ™" Vs < CU" " Wlgns as v>0 forve H'.
Moreover, ling ey = 0,
Uv—

Lemma 2.4. Suppose that 1 < r < oo and y, < y,. For any 3 > 0, there exists a constant C; =
Ci(y1,72) such that
|Eo(—"A)lgrr < CLu™ 7"yl

and
Iy (0 A < Cu? Oyl

forallv e H"" and v € (0, T]. Therefore, lim,_o v* "> "|E, (—v” A)v|gn = 0.
Y

Proof. The proof of this lemma can be studied in [17]. O
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Theorem 2.2. If f(v) is defined on the interval [c, d] is Riemann-integrable, then |f(v)| is also Riemann
integrable defined on the interval [c,d] and
< f fwldv.

d
f Fw)dv

Theorem 2.3. Suppose that f : [a,b] — R" is continuous and g : I — R" is continuously differentiable
with image g(I) C [a, b], where I C R" is some open interval showing that the function

g(s)
F(s)=- f(w)dv

a

is continuously differentiable on I.
Theorem 2.4. Let 3(v) : v > 0 C X be a Cy semi group on X. Then, the following holds

(1) IfC : D(G) C X — X, then G is said to be dense and close defined by linear operators. Therefore,
v € [0,00) = J(v)x € X is continuously differentiable for any x € D(G):

d
d—ﬁ(v)x =GIW)x = I(W)Gx, forv>DO0.
v
(11) Then there exists o > 0 such that Re(1) > 0; given A € p(C), we have
1-0)'x= f eI (w) xdv forall x € X.
0

Theorem 2.5. Let vy € (0, 1] and suppose that the positive sectorial operator is A : D(A) C X — X.
Thus, the operators {E,(-v"A) : v > 0} and {E,, ,(—v”A) : v > 0} as follows:

E,(-V'A) = f My(s)ﬁwmds, v>0
0

and )
Ey)(-v"A) = f ysM,(5)3""ds, v 2 0,

0
where 3(v) : v > 0 defines the C semigroup which is generated by —A.

Lety € (0,1) and consider the A : D(A) € X — X is a positive sectorial operator. Then for any
x € X, it holds that

27N+ Ay,
(1 +A)'x

LE,(-v"A)x}()
LE, (v A)x}(D)

Proof. The first equality can be proved analogously the second equality is for any x € X; observe that
by Theorem 2.4,

LE, (V" A)x} ) = f(; eV E, (—v"A)xdu

AIMS Mathematics Volume 8, Issue 4, 8702—-8730.
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= f e"l“vy_l(f ysM,(s)I(sv”)xds)dv.
0 0

Now by using s = wv™, we conclude the following

L{E,,(—v"A)x} (D)

f " e f )My ()T (@) dew)dy
0 0

f a)( f yv_(l”)My(wv_y)e_ﬁ“dv)T(w)xdw.
0 0

Choose .
H = f yv_(””My(a)v_")e_’l”.
0

By taking v = Tw? from Lemma 2.4, we have that

H*

© 1 1 Lo
f yaw?) "M (w(rwr) Y )e ™ wr dr
0

00 1
w! f yr M (77 )e M dr
0
— w—le—/l w

Therefore, by Theorem 2.5, we have

LE, (-vVA)x}) = f ) e (w)xdw = (X + A) ' x.
0

Lemma 2.5. Ifii(v) is the solution of (1.5) for i(0) = ax, then ii(v) is given as

i(v) = av + m f (v — ) (Aii(s) + h(s))ds as v > 0;

therefore we get

i(v) = fu E,(—(v—s)"A)ads + fv (v - s)y_lEm( — (v — s)"A)h(s)ds,
0 0

where

E,(v) = fo q(O)M, ()0 O)de.

Proof. [20] By using the above lemma rewriting (1.5) and applying the RL derivative, we get

i(v) i0) + — f (v — )= Aii(s) + F(u(s), w(s)) + Pg(s))dsasv >0

Iﬂ( )
w(v) = av+ — f (v — )" (= Aii(s) + F(i(s), w(s)) + Pg(s))ds while v > 0.
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By applying the Laplace transform, we have the following
A0 = L+ LICAu)) + S (Fach, wl) + —(Pg(d
W(A) = 5 + AU} + AF (), wlD} + 2{Pg()}.
Simplification yields

(A7 + A)ii(Q) al’? + F(ii(1), w(1)) + Pg(Q)
i) = al 2 + A" + F@), w))A + A" + P2 + A)!
() al "7t + A7+ F@a), w)) A + A7+ Pg(D)(” + A7

By taking the inverse Laplace transform and applying the convolution theorem, we get

i(v) = fv E, (—(v - s)"A)ads + fv (v—s)"E, (= (v~ s)"A)F(ii(s), w(s))ds
0 0
+ fv (v - s)y_lEW( — (v —5)"A)Pg(s)ds.
0
m]

Definition 2.4. A Problem (1.5) has global mild solution of a function & : [0,c0) — H”" in H”', if
it € C([0, 00), H”") and, for v € [0, o0),

i(v) = f E,(—(v—s)’A)ads + f (v - s)y_lEW( — (v = $)YA)F (ii(s), w(s))ds
0 0
+ f v - s)"lEm( — (v = s)"A)Pg(s)ds.
0
Definition 2.5. Let 0 < T < oo. A Problem (1.5) has local mild solution of a function i : [0, T] —» H»"

in H" if & € ([0,T],H”") and for v € [0,T], @& satisfies the Definition [2.4]. Conveniently, we
respectively define three operators Y(v) , $(v) and & (i, w)(v):

i) f "B~ - sy Ayads
0

¢(v) f (1 = )" Eyy( = (v = 5)"A)Pg(s)ds
0

w(,w)(v) = fv (v - s)y_lEW( — (v = $)YA)F(u(s), w(s))ds.
0

3. Global and local existence of mild solutions in H”""

To provide suitable circumstances for the existence and uniqueness of mild solutions [21] to the
Problem (1.5) in H”", we consider this section. Suppose that we have (K). For v > 0, Pg is continuous
and

Ipg@)l- = 0w ™"P) for0 <pB < 1and v — 0. (3.1)

AIMS Mathematics Volume 8, Issue 4, 8702—-8730.



8710

3.1. Global existence in H""

To deal with the mild solution of Problem (1.5) with global existence in H”"", let

M@) = sup (s77IPg(s)l,)

s€(0,v]
and
By = CimaxB(y(1-p),1-y(1-p)),B(y(1 -a),1 —y(1-p))
L > MCimaxB(y(1 -B),1-2y(a - B)), B(y(l1 — ), 1 - 2y(a - p)).

Theorem 3.1. Let 1 <r < oo, 0 <y < 1and(3.1) hold; then, for all at € H”". Suppose that

1
C]ldUlHy,r + B]Moo < E

1 1
If a unique function ii : [0, 00) — H”" is satisfied and we choose 22—5 < B, then there is @ > max(, E)
r
where M., = sup (s"'P Pg(s)):

s€[0,00)

(i) #(0) = axand @1 : [0, 00) — H”" shows continuity;
(ii) i@ : [0, 00) = H®" is continuous and lim,_o v"*P|i(v)|ger = 0;
(iii) For v € [0, 00), @i satisfies Definition 2.4.

Proof. Here we explain X, which is subspace of all of the curves and X, = X[oo], i : (0, 00) — H”".

1+
Now suppose that @ = i such that the following is true:

(1) @ : [0,00) > H”" is continuous and bounded.
(i) @ : (0,00) — H®" is continuous and bounded; furthermore, lim,_,o " |ii(v)|ger = 0 and its
genuine form is given by

lllx., = max ( sup @)l sup v"“ Pl e ).
v>0 >0

Now, we know that there exists M such that it, w € H*" such that F : H*" « H*" — J, is bounded and
bilinear mapping:

A

|F(I/~t7 w)ll’ —_ M|a|HOZJ|W|Ha,r
|F(ﬁ9 ﬁ) - F(w’ W)'r S M(lﬁlHU.r + |W|thr)|’7t - lea’r'

Step 1:

Consider that ii,w € X,. The term @(ii(v), w(1)) is a part of C(0, ), H" and C ([0, 3], H"). By
considering € > 0 that is very small and randomly fixing vy > 0, now again suppose that v > v
(v < vg analogously); we have

|& (), ww)) - &), wwp))|,,,, ds

< f " 7By (- = SPAVEG(s). ()], ds

AIMS Mathematics Volume 8, Issue 4, 8702—-8730.
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+ f UO | = 577" = (o = sV Eyp(— (v = 8 A)F (ii(s), W(5))|,,, ds
0
+f(; (Uo - 5)7_1|E7,y( - (U - S)yA) - Ey,y( - (UO - S)VA)F(’J(S)’ W(S))lHWdS

+ f o = ) | Eyy( = (v = s)YA) = Ey (= (v — s A)F(ii(s), w(s))|,,, ds

0—€

= D)+ Di(v) + Di3(v) + Dis(v).

In the view of Lemma 2.4, we consider every term separately for 9;,(v) and get the following

D) < le (v — )P F((s), w(s))l ds
< Mle = " PN gor, ()| gerds
< MG f (v — sy P g2 @B gg qup (szy(“_ﬁ)lﬁ(s)lm,r|w(s)|Ha,r)
v s€(0,v]

1
= MC; (1 — s)YIP-lg2@h g sup (SZ)/(Q—B)lﬁ(S)lHa,r|W(S)|Ha,r).

vo/v se(0,v]

By applying the § function properties, 3 6 > 0 much smaller as 0 < v — vy < §; we have

1
(1- S))’(l—ﬂ)—ls—h(a—ﬁ)ds >0
vo /v
which follows that as v — vy — 0, D;;(v) tends to 0.
Now for D, (v),

D1 (v)

Ci f”" (o = )" = (v =))W = ) P|F(@ls), w(s))l,ds
0

IA

MC, f (Vo= =w=9Nw-5Ps?Pds sup (Szy{a_ﬁ)lﬁ(s)ll-[mr|W(S)|Har,r).
0

s€(0,vp]

It is interesting to note that

)
f |(v0 ) L (TR L |(v — 5) PPy
0

IA

) V0
f v-s)v- s)_ﬁys_zy(“_ﬁ)ds + f (vy — s)y_l(v - s)_ﬁys_z”’(“_/’))ds
0 0

IA

2 f“O (o — S))’(l—ﬂ)—l(v _ S)_ﬁys_zy(a_ﬁ)ds
0
28(y(1 = B), 1 = 2y(a - p).

We can show this by applying Lebesgue’s dominated convergence Theorem 2.1, we get

Vo
f (o= )" = W=s)Nw=-95Ps?Pds -0, asv— wv,.
0

AIMS Mathematics Volume 8, Issue 4, 8702—-8730.
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We can say that lim Dy, (v) = 0. For Dy3(v), we have
U—Uo

A

Di(v) < f(; (Vo — S)y_l‘EY,y( - (v—s)A) - E%y( = (vo = $)"A)F (a(s), W(S))‘H)',rds

IA

f " o s>7‘1((v — P + (g - s)‘ﬁ7)|F(a<s>, w(s)ds
0

IA

)
2MC, f (o — ) 152 P s sup (7 Pia(s)|gar W) ger).
0

s€(0,v0]

Considering the uniform continuity, and by using Lebesgue’s dominated convergence theorem, we get
Di3(v) as follows

lim D5(v) f (o = 8) T NEy (= (= $)7A) = E, o (= (o — )Y A)F (a(s), w(s))lerdls
U—Up 0

= 0.

For D4(v), using calculations, we estimate that, according to the 5 function properties

puw < [ W= (W= 9+ (v — )P EC(s), w(s))|

-
V0

< 2MC, f (v — ) L5 Py
0

sup (s Piu(s)|gorW(S)|gar) = O for e — 0.
s€[vg—€,u9]
It follows that
| (ii(v), w(v)) — @(ii(vy), w(vo)|pr-ds — 0 while v — vy.

The operator’s continuity @ (it, w) can be demonstrated in C((0, o), H*") following the preceding
debate.

Step 2:

To show that @ : X, * Xoo — X 1s a continuous bilinear operator, we consider that, according to
Lemma 2.4, we have

‘ j(: (v - S)V_I|E7n/( — (v = )’ A)F(a(s), w(s))‘des

|& @), ww)),,,,

IA

C fu (v — sy =P |F(L7(s),w(s))|rds
0

IA

U
MCy f (= )P 2B gg sup (s Plia(s)| s lW(S)| ger)
0 s€(0,v]

MC 1 B((y(1 = B)), 1 = 2y(a = B)llullx..lIwllx..

and

&), o)y, = lfo v = 57 |Eyo( = = SV AF (). w(s)| ds

AIMS Mathematics Volume 8, Issue 4, 8702-8730.
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IA

Ci fu (W — )" F(@(s), w(s))lds
0

IA

U
MCy f (v = )T 2@ B gs sup (s CPia(s)] gorw(s)|gar)
0 s€(0,v]

MC WP B((y(1 = ), 1 = 2y(a — B)llallx, Wllx. -

As a result of this

sup v P& (), ww))|per < MC1B(y(1 = @), 1 = 2y(a = Bllillx, lIwllx...

ve[0,00)

To be more specific,
lim VPl (i), ww))|ger = 0.

Therefore, @(ii,w) € X, and [[@(i(v), w))llx,, < Lllillx, |Iwllx..-
Step 3:
Let O < vy < v. We have that

lB) — @), < j‘w—svﬂEW(—w—sﬂMme@wm
+ f (o — 8" = (@ = sV )|Eyy( = (t = )’ A)Pg(s)|,,,,ds
0
+ f (o = ) | Eyy(—= (v = 5)YA) = Ey o (= (vo — 5V A)PS(5)| ., ds
0

+ f (vg — s)7! |Em( -~ (w—-sVA)-E, (- (vo— s)yA)Pg(s)|des

< G f (W — )P Pg(s)l.ds
+C fo i (o = )" = (v =) — 5)P|Pg(s)|,ds
+C fo o (o — $) ' |Eyy(— (= 5VVA) = E,\( — (o — 5V A)Pg(5) . ds
anm%_mww@@ws
< CiM®) fv (v — sy P10y
v

+ClM(v)f (v=s5)"=(@y= 9 Nw-s)Ps71Pds
0
+CIC(U)f (vo — S)yfllEm( —(W-s5VA)-E, (- (v — s)VA)leds
0
)
+2€10(U)f (vo — sy PP gy,

The first two integrals and last integral tend to 0 as v — vy; also, € — 0 by using the characteristics of
the S function. Now the third integral also tends to 0 as v — v, by using Lemma 2.1. This suggests
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that
|o(v) — @(vo)|lgrr — O while v — vy.

In order to evaluate the continuity of ¢(v) in H*", we must go along with the same pattern as in H””".
On the contrary,

Bl = fo = S Eyy (—( — $)7A) Pg($)lpeds

< ¢ fo (- 7P Pg(s)lds

< M) fo Y (v = sy 1P 1B g g

= CIM@B(0r(1 =B, (1 =51 - ) (32)
Bl = fo = 7 E, (0 - 8 A)Pg(S)eds

IA

le (v — "7 |Pg(s)lds
0

IA

CiM(v) fu (v — s)?- 0 lgrdPgy
= v‘Y(“‘ﬁ)Clj\/((v)B((v(l —a)), (1 =y(1 - p))).
To be more precise,
VCPNp)|ger < CLMW)B((y(1 = @), (1 = y(1 = B))) = 0 while v — vy,

Because M(f) — 0 is the same as v — 0 owing to assumption, this result confirms that [|G(v)||. <
B M., as 3(t) € X. Now for av € H"", according to Lemma 2.1 obvious that

E,(—v"A)a € C([0, ), H")

and
E,(-v"A)a € C([0, 00), H*").

Therefore by Theorem 2.3, we can say that
\fo‘y E,(—(v - s)’A)ads € C([0, c0), H"") and j: E,(—=(v - s)’A)ads € C([0, o0), H™").
This implies that for all v € (0, J], and together with Theorem 2.2,
fou E,(—(v—$)"A)ads € Xe.
By using the above condition, we get

L@ P fo E,(-(v — s)"A)ads € C([0, 00), H*")
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IA

|| f E,(~(v— s Adadslly. f 1E,(~(v — 5 A)ally.ds
0 0

C f \dlypeds
0

Cilal(®) g

IA

IA

According to Theorem 3.1, the inequality

IA

I f E,(=v"A)ads + pW)lIx,, I f E,(—v"A)adsl|x,, + lp@)llx..
0 0

IA

f IEy(—v"A)allx. ds + lg)llx.,
0

1

4L

continues to hold, resulting in F having a unique fixed point.

Step 4:
In order to verify that ii(v) — av in H”" as v — 0, we must show that

<

U

lin& E,(—(v—-s)A)ads = 0
U 0

U

lim | (v~ s 'E, (— (v—s5)"A)Pg(s)ds = 0
v=0 Jo
lim " (v - s)"_lEW( — (v = $)"A)F(a(s),w(s))ds = 0

v—0

in H*". In fact lim, o /(v) = 0 and lim, o $(v) = O(lim, o M(v) = 0) due to (3.2). So,
f (W = ) |Eyyl = v = sYVAF((s), i(s))| . ds
0

< Cfv (= P F@cs), w(s))l,ds
0

IA

MCf (v—s)y(l_ﬁ)_llﬁ(s)lin,rds
0

IA

U
MC f (v — s)? TP g2 Bgg sup {s27("’ﬁ)|5t(s)|§,a,r}
0 s€(0,v]

= MCB((y(1 - B)), 1 = 2y(a = B)) sup {s?“Pli(s)2.,}— 0as v — vy.
s€(0,v]

Theorem 3.2. Let 1 <r < oo, 0 <y < 1and (3.1) holds; then, suppose that

n 1

— —— <8
2r 2 P

1
Then there is a unique function it : [0,00) — H”" and a > max (B, E)for all at € H”" there exists

3, > 0 satisfying the following
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(1) #(0) =avandii: [0,3.] = H”" is continuous,
(i) @ : [0, T,] = H®" is continuous, and lim,_,o v"*P|ii(v)|ger = 0O,
(iii) for v € [0, 3.], @ satisfies Definition 2.4.

Proof. Consider the space of all of the curves X = X[T] and & : (0, 3] — H”'; now, suppose that

a= so we have the following

(i) i : [0,3] — H”" is continuous.
(ii) @ : (0, 9] — H®" is continuous and lirré VY Bi(v)| ger = 0,
v

its original form is given by

lidlx = sup (v la@)lpe- ).
ve[0,9]

Similar to the conclusion of Theorem 3.1, it is worth noting that the function g : X * X — X is linearly
mappable and continuous. By Lemma 2.1 the function ¢(v) € X for all v € (0, J]. It is simple to assert

that

E(-v"A)a € C([0,5]), H")
E(-v"A)a € C([0, 5], H*).

Therefore by Theorem 2.3, we can say that
f: E,(-(v—s)A)ads € C([0,3],H"")
]: E,(—(v—s)A)ads € C([0,3],H*").
For all v € (0, 3], using Theorem 2.2 implies that
j: E,(—(v - s)A)ads € X.

We have

lillx = sup (V" PiV)lgor).
vel0,9]

By using the above condition, we get
@ P f E,(—(v — s)"A)ads € C([0, 31, H").
0

Now, consider a sufficiently small J, > 0, such that

||f E,(-v"A)ads + p()llxis.; < ||f E,(—v"A)ads||xg,; + 1EW)llx(s.)
0 0

1

<_
4L

holds, resulting in F having a unique fixed point.

O
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4. Local existence in H”"

This part is devoted to the iteration method’s evaluation of a local mild solution to Problem (1.5) in

+B

1
J,.. Consider that a = —

Theorem 4.1. Suppose that 1 <r < oo, 0 <y < 1and(3.1) holds. Suppose that

n 1
e H" with — — = <.
av Wi 73 vy

For av € H”", Problem (1.5) has a unique mild solution i in J,, A%l shows continuity on (0, 3.

Furthermore, v"(a — B)A%i(v) is bounded while v — 0. Additionally, it also shows continuity in [0, J].

Proof. Step 1:
Let

K@) = sup s"“P|A%(s),
s€(0,v]

and

() = @i, u)(v) = f U (v = ) Ey, (= (u = )’ A)F(a(s), i(s))ds.
0

According to the summary of Step 2 in Theorem 3.1, £(v) shows continuity on [0, 3] and A*Z(v) is
continuous on (0, 3] and also exists, then,

A& (@), (V) por

| f (W= ) E, ,( — (= Y AYAF(i(s), B(s))|prds
0

IA

C f ) (v — )" AYF (i(s), ii(s))|,ds
0

IA

U
MCy f (v — )T 2@B s sup {577 PAYU(s5)? | for ).
0 s€[0,v]

We have

K2w) = sup s77P|A%(s)Y,.
s€(0,v]

Using the above equation, it gives the final result such that
A L)l < MC1B(y(1 = ), 1 = 2y(a = B)YK ) 7P, (4.1)
Take into account the integral @(v). As the (3.1) holds then the inequality
1Pg(s)l, < M(w)s"' P

is accomplished by a continuous function M(v). Now considering the Step 3 of Theorem 3.1, we show
that A*@(v) shows continuity on (0, J]. Before discussing continuity, we signify

M) = sup {s"'P|A"Pg(s)l,}
s€(0,v]

4G = [y~ (= 5 AP
0

AIMS Mathematics Volume 8, Issue 4, 8702-8730.



8718

IA

¢ f (v — 571 |4 Po(s)],ds
0

IA

CIM(U)f (v — sy 1Ay
0

AP = v7PCMW)B(((1 - @), (1 = ¥(1 = B))). (4.2)

As v — 0, we get that M(v) = 0 and |Pg(v)|, = 0@ P). As v — 0, we get that |A%/(v)|, =
0(v"@P) according to (4.2). We show that the function @ is continuous in J,. In reality, considering
0<vg<v<Y, wehave

(V) — p(vo)l, < Cs f” (v — )" P Pg(s)l,ds + Cs j;vo (o= 9" = (@=957")w-s)"Pg(s)l,ds
€ [ 0 = = 97) = - G YAV
205 f " (v — 57051 Pg(s))ds
< GMW) f Y (v — sy 1-B-1 1) g ¢

+C3M(v) fO‘UO (=95)"= (o= 5 Nv-s5)Ps7"Pds
M) fo T o= 7 UE (= (0= 5YA) - Eyy( - (o — VA5 1P
+2C3M(v) f“o (vg — sV P-1gUP gy,
vo—€
Further, we assume the function fou E,(—=(v — s)”A)ads. From Theorem 2.2, it is clear that

|A® f E(~( - s)A)ads| = f |A®E,(~(v - 5)A)d] . ds.
0 0
From Lemma 2.4,
<C; f v PAPG), = CLvT"Plav| e
0
and

lim v P)|A” f E\(~(v - s)’A)ads|, = lim vV P f |E,(—(v — 5)”A)alpr-ds = 0.
0 v 0

v—0

Step 2:
We now build the result through successive approximation:
iy(v) = f E,(—(v - s)"A)ads + p(v)
0
i, (v) = i)+ @iy, i,)(v), forn=0,1,2... 4.3)

We know that denotes increasing and continuous functions on [0, J]. Moreover, K,(0) = 0. However,
according to (4.1) and (4.3), K, (v) satisfies the inequality

K1 (V) < Ko(w) + MC1B((y(1 = @), 1 = 2y( = B)K, (v). 4.4)
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Select 3 > 0 so that
AMCB((y(1 — @), 1 = 2y(a - B))Ko(v) < 1. 4.5)

Then, the sequence K, (J) is bounded; following a simple description of (4.4), so we get
K.(3) < p(3), forn=0,1,2,..., (4.6)
while (4.4) is just like the quadratic equation; we have
MCB((y(1 = @), 1 = 2y(a = K, () = Kot (v) + Ko(v) = 0.

Here, a = MC1B((y(1 - )), 1 -2y(a — B)K,2(v), b = —1 and ¢ = Ky(v). After applying the quadratic
formula, we obtain

1= 1 -4MCB((y(1 - )), 1 = 2y(a - f))Ko(v)

7(n(v) = 2MC]B((7(1 - a')), 1- 2)’(0 _ﬁ))

Considering (4.6),

11— 1-4MCB((¥(1 - @), 1 - 2y(a - B))Ko(v)
2MC1B((y(1 — @), 1 = 2y(a - B)) '

pv) =

Conversely, K, (v) < p(v) holds for any v € (0, 3]. Correspondingly, p(v) < 2%y(v). Suppose the
following concept of equality:

Yur1 (V) = f W = )" Eyy( = (U = ) AYF (11 (5), a1 (5)) = F (Tt (5), a(8))ds.
0

Forve (0,3]andn =0,1,2,..., we denote y, = it,,41 — iiy:

Y,(v) = sup s"“P|A%Y,(s)],-
s€(0,v]

Using Lemma 2.3, we get

|Fft1(5), ftns1(5)) = F (it (s), itn(5))],

IA

M(lﬁn+l| + |ﬁn|)|ﬁn+l - ﬁnl

M|ty 1] + |it,|) A%y, sup gY@ B gya=p)
SE(O,U]

M(A% 1| + |A%L,|)y, sup s~/ P gr@h)
se(0,v]

M( sup s"“P|A%G, |+ sup s7P|A,[)y,s TP
s€(0,v] s€(0,v]

M( K1 + K)yps 7P,

IA

IA

IA

IA

Then, we set

< MKt + K )yns 7O PAY sup sV @B gr@h
s€(0,v]

< M(Ki1 + K| sup s7@P A%y, ) s 2@ P
s€(0,v]
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|Ffi1(5), tys1(5)) = Fitn(s), it(5))| < MK (5) + K@) Yo(8)s™7 P
We get the results from Step 2 in Theorem 3.1:

V(@ = BIA"Ya )l < 2ZMCB((y(1 — @), 1 = y(1 = B))p()Yu(v).

It provides

IA

Yu1(3) 2MCiB((y(1 = @), 1 = 2y(a = B))p(3)Y,(I)

AMCIB(y(1 — @), 1 = 2y(a - B)Ko(3)Y,(I). (4.7)

IA

In accordance with (4.5) and (4.7), we get

1. Yn+1(s)
1m

lim — gy < 4MCB((v(1 —a)). 1 = 2y(a = BKy(T) < 1.

Hence the series ), Y,,(J) is convergent. For v € (0, 3] it shows that the series )., v” (@ — B)A%y,(v)
is uniformly convergent. Thus, the sequence {v” (@ —B)A%i1,(v)} is uniformly convergent in (0, J]. This
signifies that lim,,_,, ii,(v) = @i(v) € D(A%) and lim,,_,., " P A%, (v) = v"* P A%i(v) uniformly. From
the boundedness theorem, a function f continuous on a bounded and closed interval is necessarily
a bounded function. Therefore, A® is closed if A™® is bounded. As a result, the function K(v) =
SUP, (0. 7@ |A L, (5)|, satisfies

K(v) < p(v) < 2Ko(v), forv e (0,v] (4.8)
and

Ta = sup s CP|F(ii,(s), itu(s)) — F(@(s), ii(s))|,
5€(0,3)]

M(TK(D) + K(D)) sup s” “P|A% (i, (s) — i(s))], — 0 asn — co.
5€(0,9]

IA

Lastly, it is necessary to confirm that i is a mild solution of (1.5) in [0, J]. Because
@ (it 1) (V) — @ (@i, W)(V)|, < f W= 8" Pds =7 5, 50, asn >
0

we get w(it,, it,)(v) — @(ii, it)(v). We obtain it by taking the limits of (4.2) on both sides;
i(v) = iy(v) + (i, it)(v). 4.9)

Suppose that ii(0) = av. For v € [0,J], we can say that (4.9) holds and & € C([0, 3], J,).
Furthermore,the uniform convergence of v"“®A%,(v) to (o — B)A%i(v) shows continuity of
A%i(v). By (4.8) and K (0) = 0, we obtain that |A%u(v)|, = 0@ P is clear.

Step 3:

Now, we have to suppose that # and W are mild solutions of (1.5) because to prove that the mild
solutions are unique. Let y = &t — Ww; we consider the equality

Y(v) = fo (= $7'E, (— (u— sy AYF(@s), is)) - FGH(s), w(s))ds.
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Now, we defining the following functions:

K = max sup " P|A%(s)|,, sup s P|A%(s)],.
s€(0,v] se(0,v]

According to Theorem 3.1 and Lemma 2.4, we get
1
[A%y(v)|, < MCl(Kf (v — syl gv@bBgay )|, ds.
0

For v € (0, J], the Gronwall inequality demonstrates that A%y(v) = 0. It shows that for v € [0, J],
y(v) = ii(v) — w(v) = 0. Hence, the mild solutions are unique. |

5. Consequences of regularity for vertical flow

In this part, we evaluate the regularity’s behavior [22] of a solution # which satisfies (1.5). We will
assume throughout this section that (k;): Pg(v) has Holder’s continuity with an exponent
0 € (0,y(1 — @)), which is given as

|Pg(v) — Pg(s)|, < Llv—s|° forall0 <v,s < 3. (5.1

Definition 5.1. The problem (1.5) has a solution that is a classical solution of a function i : [0, 3] — J,,
and iz € C([0, 3], J,) with °D¥ € C([0, 31, J,), which satisfies (1.5) for all v € (0, J] and accepts values
in D(A).

Lemma 5.1. Let Definition 5.1 be satisfied if
1(v) = f (v = ) Eyy( = (v = s)"A)(Pg(5), Pg(v))ds, forv € (0,3]
0

so Ap,(v) € C¥([0, 31, J,) and ¢,(v) € D(A).
Proof. From Lemma 2.4 and (5.1), we fixed v € (0, J],

(v — s) AE,,(— (v — 5)"A)(Pg(s), Pg))l, < Ci(v—s)"'|Pg(s) — Pg(v)l,
< CLw-s)""eL0,3],J,).
Then
Ap)l, < (- $)AE, (- (v - 5)"A)(Pg(s), Pg(v))l,ds
< C1Lf (v—9)""'ds
0
C,L

< —v

0
< 00

b

we get ¢;(v) € D(A) by the closeness property of A. We must demonstrate that Ag,(v) has Holder
continuity. Because

d _
%(UV lEy,y(_,uvy)) =@ zEy,y—l(_/lUy))
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it follows that
d y-1 Y
(v AE, (-V"A))

271'[ (U _ZE)/)/ 1(_/“}7))‘4(#[ +A) ld:u

1

= 5= (V 2Eyy 1 (—u0")du — 5— f W2 Eyy 1 (—p" )DA(ul + A) ' dp.

1
Substituting —uv? = & implies that —v”du = dé. So we have that du = ——7d§:
v

1 1
=30 )y, CV B @ df— 3 f W Eyy(©) A<—51+A>“5d§.
Since
ot + A < &
|l
and

d
1@ AE, (VAN < Cu for0<v < T
v

for every 0 < s < v < J, we apply the mean value theorem

I AE, ,(-V"A)) — (s AE, (=" A))

v -
I f E(TV 'AE, (T’ A))d||

v od
< f ||d—T(TV—1AEW(—TVA))||dT

f 2dr

C, (s —v . (5.2)

IA

Now for 0 < v < v+ i < J, we suppose that 7 > 0, so

Ap (v + 1) — Ap(v)

fv (v+h- s)y_lAEW(—(v +h— 5)’A)(Pg(s) — Pg(v))ds
0
(v — ) AE,,(—(v — )"A)(Pg(s) — Pg(v))ds

+ fv (v+h- s)y_lAEM(—(v +h—5)’A)(Pg(v) — Pg(v + h))ds
0

+

v+h
f (v+h- s)y_lAEw(—(U +h— 5)’A)(Pg(s) — Pg(v + h))ds
hi(v) + fix(v) + (V). (5.3)

For convenience, we solve each term separately. For 7;(v), from (5.2) and (5.1) we have
(v, < f |(v+h— s)y‘]AEw(—(v +h—5)A)
0
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IA

IA

<

<

~(v - s 'AE, (—(v - 5)"A)||,(Pg(s) — Pg(v))ds

cthf (w+h—-s)"'wv-29""ds
0

Cthf (s +h)'w—-s)ds
0

Cth L "‘1d+Cthm g
— R — R)
4 0 h+S 4 h h+S
C,Li’.

For 71,(t), using Lemma 2.4 and (5.1), we get

()l

IA

IA

IA

fu (v+Hh—s)! |JAE, ,(—(v + h — 5)"A)(Pg(v) — Pg(v + h))|.ds

0

Ci f ’ (v +h— s)"'|Pg(v) — Pg(v + h)|.ds
0

C]h"f (v +h—s)'ds
0
C\L[Infi — In(v + W)]H’.

Now for 7i3(v), using Lemma 2.4 and (5.1), we have

3@l

IA

IA

IA

0

Hence we can say that Ay, (v) is Holder continuous by combining all of the above results.

v+h
f (v+h- s)y_llAEW(—(v +h— 5)’A)(Pg(s) — Pg(v + h))|,ds
v+h
C f (v +h — 5)"|Pg(s) — Pg(v + h)l.ds
Y v+hi
ClLf (v+h—-s5)lds

hE)
= ClL—

(5.4)

(5.5)

(5.6)

O

Theorem S5.1. Consider that the supposition of Theorem 4.1 is satisfied. If (5.1) holds, then the
classical [23] mild solutions of (1.5) are obtained for every av € D(A).

Proof. Step 1:

We have that av € D(A). So, fov E,(—v”A)ads is said to be classical solution in regard to the following

problem:

We also verify that

°DYi(v) = —Aii, v >0,
i(0) = ax.

o(v) = fv (v- s)y_lEy,y( -(v- S)VA)Pg(s)ds
0

AIMS Mathematics
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is a classical approach to the following problem:

{ ‘Dia(v) = —Aii + Pg(v), v >0, (5.8)

(0) = 0.
¢ € C([0, 31, J,) follows from Theorem 4.1. We can write $(v) = ¢;(v) + @,(v), while
&(v) = f W —s)E,,(— (v — 5" A)(Pg(s), Pg(v))ds
0
p0) = [ = By~ 0 AP
0

We can say that ¢(v) € D(A) according to Lemma 5.1. In order to prove the same conclusion for
@»(v), according to Lemma 2.2(ii1), we realized that

Agy(v) = Pg(v) — E,(—v"A)Pg(v).

It follows that (5.1):
|A@> (V)] < (1 + C)IPE)I,-

So, for v € (0, 3] we can say that $,(v) € D(A) and @,(v) € C((0, 3], J,). Now we have to show that
°D}(®) € C((0, J1, J,). Taking $(0) = 0 and in view of Lemma 2.2(iv),

. d d
‘DY@(v) = %(IJ‘WU)) = -(Ey(-U7A) x Pg).

It is still necessary to demonstrate that (E,(—v”A) * Pg) is differentiability continuous in J,. Suppose
that 0 < h < J — v; therefore, we have

1
%[(Ey(_(v +h)’A) = Pg) — (E\(—vV"A) = Pg)]
v1
= fo %[(Ey(_(v + 7= 5)"A)Pg(s)) — (Ey(—(v — 5)"A)Pg(s))]ds
v+
+ % f (E)(—(v +h — s5)"A)Pg(s))ds.

Notice that

V1
fo By (=@ + 7= s)A)Pg(5)) = (Ey(~(v = )" A)Pg(s))| ds

1 v 1 U
< 7 f(; |(Ey(_(v +h- s)YA)Pg(s))Lds + 7 fo |(Ey(—(v - S)VA)Pg(S))Lds.
In view of Lemma 2.4,

< ClM(v)% f +h—-s5)"s71Pds + C]M(v)% f (v — ) 7s 7P
0 0
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1
< CM@)Z(w+n)' + v )BA —y, 1 =y(1 = B)),
the dominated convergence theorem applies; then, we get
. "1 )
lim f £[(Ey(—(v + 1 — $)’A)Pg(s)) — (Ey(—(v — 5)"A)Pg(s)lds = E (—(v — 5)"A)Pg(s).
~YJo

From Lemma 2.2(iii), we have

E (—v"A)u

f E(-v"A)u

E(-v"Au = - f v AE, (-0 A)u.

— " 'AE, (-v"A)u

v AE, (~v" A)u

Therefore,
E;(—(v - $)’A)Pg(s) = —f (v - s)"_lAEw(—(v — 5)’A)Pg(s)ds
0
= Ap(v).

Conversely,

1 v+h

m f E,(=(v+h - s)’A)Pg(s)ds.
Let s* = v+ % — s sods” = —ds and after setting the conditions [s = v implies s* = h] and [s = v + 7

implies s* = 0], we have

0
% f E,(—(s")A)Pg(v + I — s*)(=ds").
h

By replacing s* — s, we get

i
% f E,(=s"A)[Pg(v+h —s) — Pg(v —s)
0

+Pg(v —s5)— Pg(v) + Pg(v)lds

h
% f E,(-s"A)Pg(v + 1 — s)(ds)
0

h
— % f E,(-s"A)(Pg(v+h—s)— Pg(v—s))ds
0
h
+2 [ ECoaPew -9 - Pewas
0

1 i
+£ f E,(-s"A)Pg(v)ds.
0

From Lemmas 2.1-2.4 and (5.1), we have

A

1
|%f E,(-s"A)(Pg(v+h — s)—Pg(v—s))|rds < CL#’
0
1 R’
Z _ — ) —
|hf(; E, (-s"A)(Pg(v — s) Pg(v))|rds < ClL9+1.
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From Lemma 2.1(),

h

1
lim — E,(-s"A)Pg(v)ds = Pg(v)
h—0 h J,
1 v+h
}lir% 7 E,(v+h—s)A)Pgv)yds = Pg();

v

d
we deduce that E,(v”A) = Pg holds differentiability av and d—(Ey(UVA) * Pg), = A@p(v) + Pg(v).
v

d
Similarly E,(v”A) * Pg holds differentiability at v and d—(Ey(UVA) * Pg)_ = A@(v) + Pg(v). We can
v

prove that Ap = A@; + A, € C((0, 31, J,). Clearly, we can say that according to Lemma 2.1, ,(v)
shows continuity and @,(v) = Pg(v) — E,(v”A)Pg(v) because of Lemma 2.2(iii). Consequently, A@;(v)

is continuous according to Lemma 5.1. Thus, D)@ € C((0, 31, J,).
Step 2:

Consider i as the mild solution of (1.5). In order to draw the conclusion that F(it, it) € C%((0, 3], J,), we
have to show that A®# holds Holder continuity in J, according to Theorem 3.1. Now for 0 < v < v+,
let 72 > 0. We know that y/(v) = [ E,(~(v — 5)")ads. Denoting ¢(v) := [’ E,(~v"A)ads, and by

Lemma 2.2(iii) we have

d .
—Ey(—v'A)a =~ 'AE, (-v"A)a.

Integrating on both sides, we get

U d U
f aEY(—(U — 85 A)ads = —f sy_lAEy,y(—SyA)ads.
0 0
After applying the limits, we have
E,(-v"A)a = f s"lAEW(—syA)ads.
0

Using the above results and Lemma 2.4, then

AP + 1) — A7),

v+
| f sy_lA“EW(—s’A)adsL

IA

U+
f " MAYPE, (—s"A)APal,ds

IA

v+h
Ci f s7IHP=0=1 g 61AP|,
(%

|algv.r

"Y1 +B-a)

|alpyr
P L —
Yy +p-a)
Thus A% € C%((0, 31, J,). For every small e > O we take has e < v < v+ h < J. We have

C (v + )Y@ _ yy(1+6-a)y

(1 +8-a).

v+h
A%G(w+ )~ A7), < | f (vt 7= ) ATE, (~(u + T — 5" A)Pg(s)ds],
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+| f ) A*(w+h—-s)"E, (=(v+h— s)"A)
0
~(v = ) Ey o (=(v = )" A))Pg(s)ds..
= (V) + ha(v).

Using Lemma 2.4 and (5.1), we have

IA

v+
¢1(v) C f W +h— sy " |Pg(s)lds

IA

v+
ClM(U)f (U +h - S))’(l—fl)—ls—y(l—a)—lds
M(U) hV(l Q)U—y(l a)-1
7(1 - a)

M(v)—pri-egri-o-1,
( a)

IA

IA

To estimate ¢,, we have

NaCh 2Ey 1 (—uo")A(ul + A)'dp

= 2mf ( )( "Eyy- 1(§))(—£1+A)_ ~dg,

d
— W 'AE, (-V"A
dv(v ry(VA)) 2m

which yields that
d -1l pa —)—
@ 'A°E, ,(~v"A)) < CLu"1m72,

Now, we apply the mean value theorem:

I AYE, (=07 A)) = (s AE, (=" A))

v d e
I f d_T(Ty 'AYE, (-1 A))dx]|

v o d
< f ||d—T(TY—lA“EW(—TVA))||dT

]
f Ty(l—a)—ZdT
K

— Cy(sy(l—a/)—l _ Uy(l—a/)—l).

IA

Thus,
$a(r) < | fo CAT( B 5PV Eyy(~(u + = sYA) — (0 — 1 Ey(—(w — sV A)Pg(s)ds,
< fo (= 70— (o hi— sy Pg(s)l ds
< C,M)( j(; U(U R (U j(; M(U + 11— 5?01 gr1B g )

U+
+CyM(v) f w+h- s)y(l—a)—ls_y(l_ﬁ) ds

AIMS Mathematics Volume 8, Issue 4, 8702—-8730.



8728

IA

CM)W = (v + B )B((1 - ), 1 = y(1 = B)) + C, MR~y 7P
C M Ple(e + B + C, MR Ve,

IA

This shows that A%¢ € C%[e, J1,J,). Therefore, A% € C%(0, 3], J,) due to an arbitrary &. Try to
remember that {(v) = fov(v — Y 'E, (—(v — s)YA)F (ii(s), ii(s))ds. We know that |F(i(s), i(s)|, <

MK (v)s~ @B while K(v) = sup s*@P|A%(s)|, is bounded and continuous in (0, J]. A simple
s€(0,v]

reasoning allows us to take the Holder continuity of A¢ € C%((0, 31, J,). Therefore we have that A%fi(v)
=A%p(v) + A%p(v) + A% (v) € C°((0, I], J,). We know that F(i, it) € C?((0, 8], J,) is verified; similarly
following Step 2, this yields that D}/ € C%((0, 31, J,),AL € C%((0, 31, J,) and °D}¢ = —A + F(ii, it).
So we get that D} € C%(0, 31, J,), Aii € C°(0, 3], J,) and °D}ii = —Aii + F(i, it) + Pg. Hence, we
can say that  has a classical solution. m|

Theorem 5.2. Suppose (5.1) holds if i is a classical solution of (1.5); thus, D}, € C"((0, 31, J,) and
Aii € C((0, 3], J,).

Proof. Let @i be the classical solution of Problem (1.5) and also suppose that(5.1) holds; so,i(v) =
B(v) + ¢(v) + (v) shows that Ap € C*"P)((0, ], J,). It is also sufficient to demonstrate that, for every
&> 0 there is Ap € C""P)((g, T, J,). Now by using Lemma 2.2(iii) we take ias e <v < v +h < J;

v+h
|Agw +h) - Ag()|, = | f ) ~5"'A’E,,(~s"A)ads|,

v+
Ci f sTYIPgs|al gy
v

_ Cilalm W1 — (v + By
y

IA

Cilalyrr WP
y  [BGE+RPTA

Using (5.1) and rewriting @(v) in the form of

W) = ¢1(v)+ (V)
= f (v—s)'E, (=(v — 5)”A)(Pg(s) — Pg(v))ds + f (v—s)"'E, (~(v— 5)"A)Pg(v)ds
0 0

as v € (0, 3], we can say that A@;(v) € C")((0, 3], J,) and A@,(v) € C%((0, J], J,). These results come
from Lemma 5.1 and (5.8). As we know that F(ii, it) € C*((0, 3], J,) and £(v) is verified analogously,
so we can conclude that AZ(v) € C*((0, 3], J,). Consequently, D}t = Aii+ F(it, i)+ Pg € C*((0, 31, J,)
as Aii € C”((0, 31, J,). This proof is now complete. O

6. Conclusions

This study demonstrates the existence-uniqueness of local and global mild solutions. Meanwhile,
we offer a local reasonable solution in S,,. The NS equations with time-fractional derivatives of order
v € (0, 1) were used to simulate anomaly diffusion in fractal media. We also demonstrate the existence

of regular, classical solutions to these equations in S,. The concept could be expanded upon by

AIMS Mathematics Volume 8, Issue 4, 8702—-8730.
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including MHD effects, the concept put forth in this mwork could be developed further, observability
could be added and other activities could be generalized in future work. This is an interesting area
with a lot of study going on that could lead to a lot of different applications and theories.
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