Research article Special Issues

Modelling exchange rate volatility under jump process and application analysis

  • Received: 28 November 2022 Revised: 08 January 2023 Accepted: 13 January 2023 Published: 06 February 2023
  • MSC : 62P20, 62P25, 91B05

  • Exchange rate is an important part of financial markets. Our analysis finds that the fluctuations of exchange rates have several obvious features, such as spikes, thick tails, fluctuation aggregations and asymmetry. Based on this, we build novel GARCH class model by introducing a jumping process to describe the dynamics of their fluctuations. Our empirical results show that the models with jump factors can better characterize the agglomeration and thick tail characteristics of these return fluctuations than the models without jump factors. In particular, the model with double exponential jumps can fully handle and capture the fluctuation characteristics of the returns. Our findings will be useful for individuals and governments to predict exchange rate fluctuations, provide reference for the effective management of exchange rate risk in China, and further improve the financial risk management mechanism.

    Citation: Guifang Liu, Yuhang Zheng, Fan Hu, Zhidi Du. Modelling exchange rate volatility under jump process and application analysis[J]. AIMS Mathematics, 2023, 8(4): 8610-8632. doi: 10.3934/math.2023432

    Related Papers:

  • Exchange rate is an important part of financial markets. Our analysis finds that the fluctuations of exchange rates have several obvious features, such as spikes, thick tails, fluctuation aggregations and asymmetry. Based on this, we build novel GARCH class model by introducing a jumping process to describe the dynamics of their fluctuations. Our empirical results show that the models with jump factors can better characterize the agglomeration and thick tail characteristics of these return fluctuations than the models without jump factors. In particular, the model with double exponential jumps can fully handle and capture the fluctuation characteristics of the returns. Our findings will be useful for individuals and governments to predict exchange rate fluctuations, provide reference for the effective management of exchange rate risk in China, and further improve the financial risk management mechanism.



    加载中


    [1] K. K. Kim, K. S. Park, Transferring and sharing exchange-rate risk in a risk-averse supply chain of a multinational firm, Eur. J. Oper. Res., 237 (2014), 634–648. https://doi.org/10.1016/j.ejor.2014.01.067 doi: 10.1016/j.ejor.2014.01.067
    [2] T. Mayer, W. Steingress, Estimating the effect of exchange rate changes on total exports, J. Int. Money Financ., 106 (2020), 102184. https://doi.org/10.1016/j.jimonfin.2020.102184 doi: 10.1016/j.jimonfin.2020.102184
    [3] S. Kharrat, Y. Hammami, I. Fatnassi, On the cross-sectional relation between exchange rates and future fundamentals, Econ. Model., 89 (2020), 484–501. https://doi.org/10.1016/j.econmod.2019.11.024 doi: 10.1016/j.econmod.2019.11.024
    [4] S. P. Yang, Exchange rate dynamics and stock prices in small open economies: evidence from Asia-Pacific countries, Pac.-Basin Financ. J., 46 (2017), 337–354. https://doi.org/10.1016/j.pacfin.2017.10.004 doi: 10.1016/j.pacfin.2017.10.004
    [5] H. T. Chen, L. Liu, Y. D. Wang, Y. M. Zhu, Oil price shocks and U.S. dollar exchange rates, Energy, 112 (2016), 1036–1048. https://doi.org/10.1016/j.energy.2016.07.012 doi: 10.1016/j.energy.2016.07.012
    [6] F. Malik, Z. Umar, Dynamic connectedness of oil price shocks and exchange rates, Energ. Econ., 84 (2019), 104501. https://doi.org/10.1016/j.eneco.2019.104501 doi: 10.1016/j.eneco.2019.104501
    [7] K. Gokmenoglu, B. M. Eren, S. Hesami, Exchange rates and stock markets in emerging economies: new evidence using the Quantile-on-Quantile approach, Quant. Financ. Econ., 5 (2021), 94–110. https://doi.org/10.3934/QFE.2021005 doi: 10.3934/QFE.2021005
    [8] K. H. Liow, J. Song, X. Zhou, Volatility connectedness and market dependence across major financial markets in China economy, Quant. Financ. Econ., 5 (2021), 397–420. https://doi.org/10.3934/QFE.2021018 doi: 10.3934/QFE.2021018
    [9] M. Umutlu, P. Bengitöz, Return range and the cross-section of expected index returns in international stock markets, Quant. Financ. Econ., 5 (2021), 421–451. https://doi.org/10.3934/QFE.2021019 doi: 10.3934/QFE.2021019
    [10] T. M. Awan, M. S. Khan, U. Haq, S. Kazmi, Oil and stock markets volatility during pandemic times: a review of G7 countries, Green Finance, 3 (2021), 15–27. https://doi.org/10.3934/GF.2021002 doi: 10.3934/GF.2021002
    [11] M. Qamruzzaman, Do international capital flows, institutional quality matter for innovation output: the mediating role of economic policy uncertainty, Green Finance, 3 (2021), 351–382. https://doi.org/10.3934/GF.2021018 doi: 10.3934/GF.2021018
    [12] C. Luo, Z. Li, L. Liu, Does investor sentiment affect stock pricing? Evidence from seasoned equity offerings in China, National Accounting Review, 3 (2021), 115–136. https://doi.org/10.3934/NAR.2021006 doi: 10.3934/NAR.2021006
    [13] D. Gupta, A. Parikh, T. K. Datta, A multi-criteria decision-making approach to rank the sectoral stock indices of national stock exchange of India based on their performances, National Accounting Review, 3 (2021), 272–292. https://doi.org/10.3934/NAR.2021014 doi: 10.3934/NAR.2021014
    [14] Z. Li, H. Chen, B. Mo, Can digital finance promote urban innovation? Evidence from China, Borsa Istanb. Rev., in press. https://doi.org/10.1016/j.bir.2022.10.006
    [15] Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity?, Economic Research-Ekonomska Istraživanja, 35 (2022), 4902–4921. https://doi.org/10.1080/1331677X.2021.2019596 doi: 10.1080/1331677X.2021.2019596
    [16] S. W. Gong, Analysis of RMB exchange rate volatility based on GARCH family model, (Chinese), Statistics & Decision, 12 (2015), 159–161. https://doi.org/10.13546/j.cnki.tjyjc.2015.12.046
    [17] S. G. Kou, A jump-diffusion model for option pricing, Manage. Sci., 48 (2002), 1086–1101. https://doi.org/10.1287/mnsc.48.8.1086.166 doi: 10.1287/mnsc.48.8.1086.166
    [18] T. Choudhry, H. Wu, Forecasting ability of GARCH vs Kalman filter method: evidence from daily UK time-varying Beta, J. Forecasting, 27 (2008), 670–689. https://doi.org/10.1002/for.1096 doi: 10.1002/for.1096
    [19] Z. Li, J. Zhu, J. He, The effects of digital financial inclusion on innovation and entrepreneurship: a network perspective, Electron. Res. Arch., 30 (2022), 4697–4715. https://doi.org/10.3934/era.2022238 doi: 10.3934/era.2022238
    [20] T. Li, J. Wen, D. Zeng, K. Liu, Has enterprise digital transformation improved the efficiency of enterprise technological innovation? A case study on Chinese listed companies, Math. Biosci. Eng., 19 (2022), 12632–12654. https://doi.org/10.3934/mbe.2022590 doi: 10.3934/mbe.2022590
    [21] Y. Liu, P. Failler, Y. Ding, Enterprise financialization and technological innovation: mechanism and heterogeneity, PLoS ONE, 17 (2022), e0275461. https://doi.org/10.1371/journal.pone.0275461 doi: 10.1371/journal.pone.0275461
    [22] Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies?, Financ. Res. Lett., 50 (2022), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308
    [23] Z. Li, H. Dong, C. Floros, A. Charemis, P. Failler, Re-examining bitcoin volatility: a CAViaR-based approach, Emerg. Mark. Financ. Tr., 58 (2022), 1320–1338. https://doi.org/10.1080/1540496x.2021.1873127 doi: 10.1080/1540496x.2021.1873127
    [24] S. Chen, S. Liu, R. Cai, Y. Zhang, The factors that influence exchange-rate risk: evidence in China, Emerg. Mark. Financ. Tr., 56 (2020), 1275–1292. https://doi.org/10.1080/1540496x.2019.1636229 doi: 10.1080/1540496x.2019.1636229
    [25] N. U. Sambo, I. S. Farouq, M. T. Isma'il, Asymmetric effect of exchange rate volatility on trade balance in Nigeria, National Accounting Review, 3 (2021), 342–359. https://doi.org/10.3934/NAR.2021018 doi: 10.3934/NAR.2021018
    [26] R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation, Econometrica, 50 (1982), 987–1008. https://doi.org/0012-9682(198207)50:4<987:ACHWEO>2.0.CO;2-3
    [27] T. Bollerslev, A conditionally heteroskedastic time series model for speculative prices and rates of return, Rev. Econ. Stat., 69 (1987), 542–547. https://doi.org/10.2307/1925546 doi: 10.2307/1925546
    [28] S. R. Bentes, A comparative analysis of the predictive power of implied volatility indices and GARCH forecasted volatility, Physica A, 424 (2015), 105–112. https://doi.org/10.1016/j.physa.2015.01.020 doi: 10.1016/j.physa.2015.01.020
    [29] E. Abounoori, Z. M. Elmi, Y. Nademi, Forecasting Tehran stock exchange volatility; Markov switching GARCH approach, Physica A, 445 (2016), 264–282. https://doi.org/10.1016/j.physa.2015.10.024 doi: 10.1016/j.physa.2015.10.024
    [30] Z. Li, L. Chen, H. Dong, What are bitcoin market reactions to its-related events?, Int. Rev. Econ. Financ., 73 (2021), 1–10. https://doi.org/10.1016/j.iref.2020.12.020 doi: 10.1016/j.iref.2020.12.020
    [31] Y. Liu, P. Failler, Z. Liu, Impact of environmental regulations on energy efficiency: a case study of China's air pollution prevention and control action plan, Sustainability, 14 (2022), 3168. https://doi.org/10.3390/su14063168 doi: 10.3390/su14063168
    [32] Y. Liu, Z. Li, M. Xu, The influential factors of financial cycle spillover: evidence from China, Emerg. Mark. Financ. Tr., 56 (2020), 1336–1350. https://doi.org/10.1080/1540496x.2019.1658076 doi: 10.1080/1540496x.2019.1658076
    [33] X. C. Liu, R. Luger, Unfolded GARCH models, J. Econ. Dyn. Control, 58 (2015), 186–217. https://doi.org/10.1016/j.jedc.2015.06.007 doi: 10.1016/j.jedc.2015.06.007
    [34] J. Duan, P. Ritchken, Z. Sun, Approximating GARCH-Jump models, jump diffusion processes, and option pricing, Math. Financ., 16 (2006), 21–52. https://doi.org/10.1111/J.1467-9965.2006.00259.X doi: 10.1111/J.1467-9965.2006.00259.X
    [35] P. Christoffersen, K. Jacobs, C. Ornthanalai, Dynamic jump intensities and risk premiums: evidence from S & P500 Returns and options, J. Financ. Econ., 106 (2012), 447–472. https://doi.org/10.1016/j.jfineco.2012.05.017 doi: 10.1016/j.jfineco.2012.05.017
    [36] S. J. Byun, B. H. Jeon, B. Min, S. J. Yoon, The role of the variance premium in jump-GARCH option pricing models, J. Bank. Financ., 59 (2015), 38–56. https://doi.org/10.1016/j.jbankfin.2015.05.009 doi: 10.1016/j.jbankfin.2015.05.009
    [37] P. Christoffersen, S. Heston, K. Jacobs, Capturing option anomalies with a variance-dependent pricing kernel, Rev. Financ. Stud., 26 (2013), 1963–2006. https://doi.org/10.1093/rfs/hht033 doi: 10.1093/rfs/hht033
    [38] G. X. Qiao, J. Y. Yang, W. P. Li, VIX forecasting based on GARCH-type model with observable dynamic jumps: a new perspective, N. Am. Econ. Financ., 53 (2020), 101186. https://doi.org/10.1016/j.najef.2020.101186 doi: 10.1016/j.najef.2020.101186
    [39] S. H. Hu, S. Y. Zhang, T. Zhang, Hyperbolic jump-diffusion models for assets prices, (Chinese), System Engineering Theory & Practice, 3 (2006), 1–10. https://doi.org/10.3321/j.issn:1000-6788.2006.03.001
    [40] J. Barunik, T. Krehlik, L. Vacha, Modeling and forecasting exchange rate volatility in time-frequency domain, Eur. J. Oper. Res., 251 (2016), 329–340. https://doi.org/10.1016/j.ejor.2015.12.010 doi: 10.1016/j.ejor.2015.12.010
    [41] T. Bollerslev, Generalized autoregressive conditional heteroscedasticity, J. Econometrics, 31 (1986), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 doi: 10.1016/0304-4076(86)90063-1
    [42] L. R. Glosten, R. Jagannathan, D. E. Runkle, On the relation between the expected value and the volatility of the nominal excess return on stocks, J. Financ., 48 (1993), 1779–1801. https://doi.org/10.1111/j.1540-6261.1993.tb05128.x doi: 10.1111/j.1540-6261.1993.tb05128.x
    [43] C. M. Jarque, A. K. Bera, A test for normality of observations and regression residuals, Int. Stat. Rev., 55 (1987), 163–172.
    [44] J. Danielsson, Stochastic volatility in asset prices estimation with simulated maximum likelihood, J. Econometrics, 64 (1994), 375–400. https://doi.org/10.1016/0304-4076(94)90070-1 doi: 10.1016/0304-4076(94)90070-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1396) PDF downloads(81) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog