Research article

Orbital stability of periodic standing waves of the coupled Klein-Gordon-Zakharov equations

  • Received: 03 October 2022 Revised: 19 January 2023 Accepted: 27 January 2023 Published: 06 February 2023
  • MSC : 35B35, 35C08, 35R10

  • This paper investigates the orbital stability of periodic standing waves for the following coupled Klein-Gordon-Zakharov equations

    $ \begin{equation*} \left\{ \begin{aligned} &u_{tt}-u_{xx}+u+\alpha uv+\beta|u|^{2}u = 0, \ &v_{tt}-v_{xx} = (|u|^{2})_{xx}, \end{aligned} \right. \end{equation*} $

    where $\alpha>0$ and $\beta$ are two real numbers and $\alpha>\beta$. Under some suitable conditions, we show the existence of a smooth curve positive standing wave solutions of dnoidal type with a fixed fundamental period L for the above equations. Further, we obtain the stability of the dnoidal waves for the coupled Klein-Gordon-Zakharov equations by applying the abstract stability theory and combining the detailed spectral analysis given by using Lam\'{e} equation and Floquet theory. When period $L\rightarrow\infty$, dnoidal type will turn into sech-type in the sense of limit. In such case, we can obtain stability of sech-type standing waves. In particular, $\beta = 0$ is advisable, we still can show the the stability of the dnoidal type and sech-type standing waves for the classical Klein-Gordon-Zakharov equations.

    Citation: Qiuying Li, Xiaoxiao Zheng, Zhenguo Wang. Orbital stability of periodic standing waves of the coupled Klein-Gordon-Zakharov equations[J]. AIMS Mathematics, 2023, 8(4): 8560-8579. doi: 10.3934/math.2023430

    Related Papers:

  • This paper investigates the orbital stability of periodic standing waves for the following coupled Klein-Gordon-Zakharov equations

    $ \begin{equation*} \left\{ \begin{aligned} &u_{tt}-u_{xx}+u+\alpha uv+\beta|u|^{2}u = 0, \ &v_{tt}-v_{xx} = (|u|^{2})_{xx}, \end{aligned} \right. \end{equation*} $

    where $\alpha>0$ and $\beta$ are two real numbers and $\alpha>\beta$. Under some suitable conditions, we show the existence of a smooth curve positive standing wave solutions of dnoidal type with a fixed fundamental period L for the above equations. Further, we obtain the stability of the dnoidal waves for the coupled Klein-Gordon-Zakharov equations by applying the abstract stability theory and combining the detailed spectral analysis given by using Lam\'{e} equation and Floquet theory. When period $L\rightarrow\infty$, dnoidal type will turn into sech-type in the sense of limit. In such case, we can obtain stability of sech-type standing waves. In particular, $\beta = 0$ is advisable, we still can show the the stability of the dnoidal type and sech-type standing waves for the classical Klein-Gordon-Zakharov equations.



    加载中


    [1] S. G. Thornhill, D. Haar, Langmuir turbulence and modulational instability, Phys. Rep., 43 (1978), 43–99. https://doi.org/10.1016/0370-1573(78)90142-4 doi: 10.1016/0370-1573(78)90142-4
    [2] R. O. Dendy, Plasma dynamics, Oxford University Press, 1990.
    [3] B. L. Guo, G. W. Yuan, Global smooth solution for the Klein-Gordon-Zakharov equations, J. Math. Phys., 36 (1995), 4119–4124. http://doi.org/10.1063/1.530950 doi: 10.1063/1.530950
    [4] T. Ozawa, K. Tsutaya, Y. Tsutsumi, Normal form and global solutions for the Klein-Gordon-Zakharov equations, Ann. Inst. Henri Poincar$\acute{e}$ Anal. Nonlin$\acute{e}$aire, 12 (1995), 459–503. http://doi.org/10.1016/S0294-1449(16)30156-1 doi: 10.1016/S0294-1449(16)30156-1
    [5] T. C. Wang, B. L. Guo, Convergence of a linearized and conservative difference scheme for the Klein-Gordon-Zakharov equation, J. Partial Differ. Equations, 26 (2013), 107–121. https://doi.org/10.4208/jpde.v26.n2.2 doi: 10.4208/jpde.v26.n2.2
    [6] J. Chen, L. M. Zhang, Two energy conserving numerical schemes for the Klein-Gordon-Zakharov equations, J. Appl. Math., 2013 (2013), 462018. http://doi.org/10.1155/2013/462018 doi: 10.1155/2013/462018
    [7] G. Ebadi, E. V. Krishnan, A. Biswas, Solitons and cnoidal waves of the Klein-Gordon-Zakharov equation in plasmas, Pramana, 79 (2012), 185–198. http://doi.org/10.1007/s12043-012-0307-4 doi: 10.1007/s12043-012-0307-4
    [8] M. S. Ismail, A. Biswas, 1-Soliton solution of the Klein-Gordon-Zakharov equation with power law nonlinearity, Appl. Math. Comput., 217 (2010), 4186–4196. http://doi.org/10.1016/j.amc.2010.10.035 doi: 10.1016/j.amc.2010.10.035
    [9] M. Dehghan, A. Nikpour, The solitary wave solution of coupled Klein-Gordon-Zakharov equations via two different numerical methods, Comput. Phys. Commun., 184 (2013), 2145–2158. http://doi.org/10.1016/j.cpc.2013.04.010 doi: 10.1016/j.cpc.2013.04.010
    [10] X. X. Zheng, Y. D. Shang, X. M. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Meth. Appl. Sci., 40 (2017), 2623–2633. http://doi.org/10.1002/mma.4187 doi: 10.1002/mma.4187
    [11] L. Chen, Orbital stability of solitary waves for the Klein-Gordon-Zakharov equations, Acta Math. Appl. Sin., 15 (1999), 54–64. http://doi.org/10.1007/BF02677396 doi: 10.1007/BF02677396
    [12] S. Hakkaev, M. Stanislavova, A. Stefanov, Orbital stability for periodic standing waves of the Klein-Gordon-Zakharov system and the beam equation, Z. Angew. Math. Phys., 64 (2013), 265–282. http://doi.org/10.1007/s00033-012-0228-6 doi: 10.1007/s00033-012-0228-6
    [13] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry Ⅰ, J. Funct. Anal., 74 (1987), 160-197. http://doi.org/10.1016/0022-1236(87)90044-9 doi: 10.1016/0022-1236(87)90044-9
    [14] M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry Ⅱ, J. Funct. Anal., 94 (1990), 308–348. http://doi.org/10.1016/0022-1236(90)90016-E doi: 10.1016/0022-1236(90)90016-E
    [15] S. Hakkaev, M. Stanislavova, A. Stefanov, Linear stability analysis for periodic travelling waves of the Boussinesq equation and the Klein-Gordon-Zakharov system, Proc. R. Soc. Edinburgh Sect. A, 144 (2014), 455–489. http://doi.org/10.1017/S0308210512000741 doi: 10.1017/S0308210512000741
    [16] Z. H. Gan, Orbital instability of standing waves for the Klein-Gordon-Zakharov system, Adv. Nonlinear Stud., 8 (2008), 413–428. http://dx.doi.org/10.1515/ans-2008-0211 doi: 10.1515/ans-2008-0211
    [17] Q. Zhu, Z. Zhou, T. J. Luo, Orbital instability of standing waves for the Klein-Gordon-Schrödinger system with quadratic-cubic nonlinearity, J. Math. Anal. Appl., 456 (2017), 1329–1346. http://doi.org/10.1016/j.jmaa.2017.07.036 doi: 10.1016/j.jmaa.2017.07.036
    [18] F. Natali, E. Cardoso, Orbital stability of periodic standing waves for the logarithmic Klein-Gordon equation, J. Math. Anal. Appl., 484 (2019), 123723. http://doi.org/10.1016/j.jmaa.2019.123723 doi: 10.1016/j.jmaa.2019.123723
    [19] F. Natali, E. Cardoso, Existence and orbital stability of standing waves for the 1D Schrödinger-Kirchhoff equation, J. Math. Anal. Appl., 500 (2021), 125098. http://doi.org/10.1016/j.jmaa.2021.125098 doi: 10.1016/j.jmaa.2021.125098
    [20] G. E. B. Moraes, H. Borluk, G. de Loreno, G. M. Muslu, F. Natali, Orbital stability of periodic standing waves for the cubic fractional nonlinear Schrödinger equation, J. Differ. Equations, 341 (2022), 263–291. http://doi.org/10.1016/j.jde.2022.09.015 doi: 10.1016/j.jde.2022.09.015
    [21] J. R. Quintero, Stability and instability analysis for the standing waves for a generalized Zakharov-Rubenchik system, Proyecciones, 41 (2022), 663–682. http://doi.org/10.22199/issn.0717-6279-4547 doi: 10.22199/issn.0717-6279-4547
    [22] Y. L. Wang, Existence of stable standing waves for the nonlinear Schrödinger equation with inverse-power potential and combined power-type and Choquard-type nonlinearities, AIMS Math., 6 (2021), 5837–5850. http://doi.org/10.3934/math.2021345 doi: 10.3934/math.2021345
    [23] X. X. Zheng, J. Xin, Y. Y. Gu, Orbital stability of solitary waves to the coupled compound KdV and MKdV equations with two components, AIMS Math., 5 (2020), 3298–3320. http://doi.org/10.3934/math.2020212 doi: 10.3934/math.2020212
    [24] X. X. Zheng, H. F. Di, X. M. Peng, Orbital stability of solitary waves for the generalized long-short wave resonance equations with a cubic-quintic strong nonlinear term, J. Inequal. Appl., 2020 (2020), 238. http://doi.org/10.1186/S13660-020-02505-7 doi: 10.1186/S13660-020-02505-7
    [25] P. Byrd, M. Friedman, Handbook of elliptic integrals for engineers and scientists, Springer, 1971.
    [26] Z. X. Wang, D. R. Guo, Special functions, World Scientific Publishing, 1989.
    [27] W. Magnus, S. Winkler, Hill$^{\prime}$s equation, Dover Publications, 1966.
    [28] X. X. Zheng, Y. D. Shang, X. M. Peng, Orbital stability of periodic traveling wave solutions to the generalized Zakharov equations, Acta Math. Sci., 37 (2017), 998–1018. http://doi.org/10.1016/S0252-9602(17)30054-1 doi: 10.1016/S0252-9602(17)30054-1
    [29] E. L. Ince, The periodic lamé functions, Proc. R. Soc. Edinburgh Sect. B, 60 (1940), 47–63. http://doi.org/0.1017/S0370164600020058 doi: 10.1017/S0370164600020058
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1072) PDF downloads(75) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog