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Klein-Gordon-Zakharov equations by applying the abstract stability theory and combining the detailed
spectral analysis given by using Lamé equation and Floquet theory. When period L → ∞, dnoidal
type will turn into sech-type in the sense of limit. In such case, we can obtain stability of sech-type
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1. Introduction

The coupled Klein-Gordon-Zakharov equationsutt − uxx + u + αuv + β|u|2u = 0,
vtt − vxx = (|u|2)xx

(1.1)

describes the interaction between the Langmuir waves and ion acoustic waves in a high frequency
plasma (see [1, 2]). The complex value function u(x, t) is the fast time scale component of the electric
field raised by electrons, and the real value function v(x, t) is the deviation of ion density from its
equilibrium. In recent years, there have been many works on the research for the coupled Klein-
Gordon-Zakharov Eq (1.1). In the literature [3], Guo and Yuan studied the existence and uniqueness of
the global smooth solution of the Eq (1.1) without assuming small Cauchy data. Ozawa et al. [4] proved
the well-posedness of the Eq (1.1) in three-dimensional space. In [5], Wang et al. considered initial
and homogeneous boundary value problems of the Eq (1.1), and used the energy method to prove the
existence and uniqueness of the difference solution. Chen and Zhang [6] proposed two new difference
schemes for an initial-boundary-value problem of the coupled Klein-Gordon-Zakharov equations and
proved stability and convergence of difference solutions. Many authors obtained some explicit exact
solitary wave solutions and numerical solutions for the coupled KGZ equations by using a various of
different approaches (see [7–9]). Zheng et al. [10] investigated the orbital stability of solitary waves
for the Eq (1.1). Note that if α = 1 and β = 0, the system (1.1) reduces to the classical Klein-Gordon-
Zakharov equations utt − uxx + u + uv = 0,

vtt − vxx = (|u|2)xx.
(1.2)

The system (1.2) arises in the study of the interaction between a Langmuir wave and an ion sound
wave in plasma. Chen [11] considered orbital stability of solitary waves for the classical Klein-Gordon-
Zakharov Eq (1.2). Hakkaev et al. [12] studied the orbital stability for periodic standing waves of the
Eq (1.2) by applying the abstract results of Grillakis et al. [13, 14]. Hakkaev et al. [15] studied the
linear stability analysis for periodic travelling waves of the Eq (1.2). In 2008, Gan [16] obtained orbital
instability of standing waves for the Eq (1.2). Recently, many authors have studied the orbital stability
and instability of standing waves and solitary waves (see [17–24]). The study of orbital stability for
standing waves is valuable.

In this paper, we are interested in the existence and orbital stability of periodic standing wave
solutions for the coupled Klein-Gordon-Zakharov equations with α > β. Because here the stability
refers to perturbations of the periodic wave profile itself, a study for the initial value problem of (1.1) is
necessary. Similarly to Theorem in [3,4,12], we obtain the well-posedness of the initial value problem
of (1.1).

Theorem 1.1. Let s > 1
2 . For any fixed

(u(0), ut(0)) ∈ H s(R) × H s−1(R), (v(0), vt(0)) ∈ H s−1(R) × H s−2(R),

there exists a time T , depending only on the norms in the respective spaces, so that there exists a unique
solution

u(x, t) ∈ C([0,T ],H s(R)), ut(x, t) ∈ C([0,T ],H s−1(R)),
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v(x, t) ∈ C([0,T ],H s−1(R)), vt(x, t) ∈ C([0,T ],H s−2(R)).

We focus on solutions for (1.1) of the form

u(x, t) = eiωtφ(x), and v(x, t) = ψ(x), (1.3)

whereω ∈ R, and φ(ξ), ψ(ξ): R→ R are periodic smooth functions with the same arbitrary fundamental
period L > 0.

In order to write the Eq (1.1) into Hamiltonian form and obtain our results of stability for the
periodic traveling wave solutions in (1.3), we rewrite the coupled Klein-Gordon-Zakharov equations

ut = −ρ,

ρt = −uxx + u + αuv + β|u|2u,

vt = nx,

nt = vx + |u|2x.

(1.4)

Then, we have

u(x, t) = eiωtφ(x), v(x, t) = ψ(x),
ρ(x, t) = −iωu = −iωeiωtφ(x), n(x, t) = 0, (1.5)

and ω2φ = −φ′′ + φ + αφψ + βφ3,

ψ′ + (φ2)′ = 0.
(1.6)

Although, the abstract orbital stability theory presented by Grillakis et al. [14] cannot be applied
directly, by applying the extension version of the general theory of orbital stability presented by
Grillakis et al. [13] and combining detailed spectral analysis given by using Lamé equation and
Floquet theory, we obtain the orbital stability of periodic traveling waves (1.3) for the Eq (1.1).

This paper is organized as follows. In section 2, we present some remarks regarding periodic
Sobolev space and Jacobi elliptic functions. Section 3 is devoted to the existence of a smooth curve of
dnoidal wave solutions for the Eq (1.1). In Section 4, we study the spectral analysis of some certain
self-adjoint operators necessary to obtain our stability results. In Section 5, we show orbital stability
of the dnoidal waves solutions for the Eq (1.1).

2. Notation

The normal elliptic integral of the first type (see [25, 26]) is defined by∫ y

0

dt√
(1 − t2)(1 − k2t2)

=

∫ ϕ

0

dθ√
1 − k2 sin2 θ

≡ F(ϕ, k),

and the normal elliptic integral of the second kind∫ y

0

√
1 − k2t2

1 − t2 dt =

∫ ϕ

0

√
1 − k2 sin2 θdθ ≡ E(ϕ, k),
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where
y = sinϕ ∈ (0, 1], k ∈ (0, 1).

The number k is called the modulus. The number k′ =
√

1 − k2 is called the complementary modulus.
ϕ ∈ (0, π2 ] is called the argument of the normal elliptic integral.

When y = 1, we denote F(π2 , k) by K = K(k) and E(π2 , k) by E = E(k). So

K(0) = E(0) =
π

2
, E(1) = 1, and K(1) = +∞.

For k ∈ (0, 1),

K′(k) =
E − k′2K

k′2k
> 0, K′′(k) > 0, E′(k) =

E − K
k

< 0, and E′′(k) < 0.

Moreover, for k ∈ (0, 1), we have that E(k) < K(k), and E(k) + K(k), E(k)K(k) are strictly increasing
functions.

The Jacobian elliptic functions are denoted by sn(u; k), cn(u; k) and dn(u; k) (called snoidal, cnoidal
and dnoidal, respectively) which are defined via the previous elliptic integral. Considering the elliptic
integral

u(y; k) := u = F(ϕ, k),

we can define its inverse function by

y = sinϕ ≡ sn(u; k), cn(u; k) =
√

1 − sn2(u; k),

and
dn(u; k) =

√
1 − k2sn2(u; k).

Then, we have the asymptotic formulae

sn(x; 1) = tanh(x), cn(x; 1) = sech(x) and dn(x; 1) = sech(x).

3. Existence of dnoidal wave solutions for the coupled Klein-Gordon-Zakharov equations

This section is devoted to show the existence of a smooth curve of dnoidal wave solutions to the
coupled Klein-Gordon-Zakharov Eq (1.1) of the form (1.3).

By the second equation in (1.6), we have

ψ = −φ2 + d1x + d2. (3.1)

Since ψ is a periodic function, it is clear that d1 = 0. For simplicity, we take the other constant of
integration d2 = 0. So, from (3.1), it follows

ψ = −φ2. (3.2)

Then, substituting (3.2) into the first equation of (1.6), we have

φ′′ − (1 − ω2)φ + (α − β)φ3 = 0. (3.3)
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Next, we show that the Eq (3.3) has an explicit periodic solution which will depend on Jacobian
elliptic functions. In fact, multiplying (3.3) by φ′ and integrating once, we obtain that the solution φ
has to satisfy

(φ′)2 =
α − β

2
[−φ4 +

2(1 − ω2)
α − β

φ2 −
4

α − β
Aφ], (3.4)

where Aφ is a needed integration constant different of zero. For convenience, we make

$(t) = −t4 +
2(1 − ω2)
α − β

t2 −
4

α − β
Aφ.

For 1 − ω2 > 0 and 0 < Aφ <
(1−ω2)2

4(α−β) , we have

$(t) = −
(
t2 −

1 − ω2

α − β

)2
+

(1 − ω2)2

(α − β)2 −
4Aφ

α − β

=
(
t2 −

1 − ω2

α − β
+

√
(1 − ω2)2

(α − β)2 −
4Aφ

α − β

)
·
(√ (1 − ω2)2

(α − β)2 −
4Aφ

α − β
+

1 − ω2

α − β
− t2),

where √
(1 − ω2)2

(α − β)2 −
4Aφ

α − β
−

1 − ω2

α − β
< 0,

and √
(1 − ω2)2

(α − β)2 −
4Aφ

α − β
+

1 − ω2

α − β
> 0.

Hence, ω(t) has the real and symmetric roots ±η1 and ±η2. Without loss of generality, 0 < η2 < η1.
So, we can write (3.4) as

(φ′)2 =
α − β

2
(φ2 − η2

2)(η2
1 − φ

2). (3.5)

Assume that 1 − ω2 > 0, then left side of (3.5) is not negative. Therefore, we have that η2 ≤ φ ≤ η1

and η1, η2 satisfy 
η2

1 + η2
2 =

2(1 − ω2)
α − β

> 0,

η2
1η

2
2 = −

4
α − β

Aφ > 0.
(3.6)

Define ρ =
φ

η1
and k2 =

η2
1−η

2
2

η2
1

, then (3.5) becomes

(ρ′)2 =
(α − β)η2

1

2
(ρ2 −

η2
2

η2
1

)(1 − ρ2). (3.7)
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Define a new variable χ through the relation ρ2 = 1 − k2 sin2 χ, from (3.7), we get

(χ′)2 =
(α − β)η2

1

2
(1 − k2 sin2 χ).

Then, we obtain that ∫ χ(x)

0

dt√
1 − k2 sin2 t

=

√
α − β

2
η1x.

Via the definition of the Jacobi elliptic function, the above integral equation has the solution

sin(χ(x)) = sn(

√
α − β

2
η1x; k).

Hence, using the fact that k2sn2 + dn2 = 1, we obtain

ρ(x) =

√
1 − k2 sin2 χ =

√
1 − k2sn2(

√
α − β

2
η1x; k) = dn(

√
α − β

2
η1x; k),

and ρ(0) = 1. From the relation ρ =
φ

η1
, we obtain the dnoidal wave solution

φ(x) = η1dn(

√
α − β

2
η1x; k). (3.8)

Substituting (3.8) into (3.2), we have

ψ(x) = −η2
1dn2(

√
α − β

2
η1x; k). (3.9)

Now, since dn has fundamental period 2K, dn(u; k) = dn(u + 2K; k), where K = K(k) represents the
complete elliptic integral of first kind, we obtain that φ and ψ have fundamental period given by

Tφ = Tψ =
2
√

2
√
α − βη1

K(k). (3.10)

Fix ω such that 1 − ω2 > 0, and define ν = 1 − ω2. Then, from (3.6), we get 0 < η2 <
√

ν
α−β

< η1 <√
2ν
α−β

and we can see (3.10) as a function of a unique variable η2, namely

Tφ(η2) = Tψ(η2) =
2
√

2√
2ν − (α − β)η2

2

K(k(η2)) with k2(η2) =
2ν − 2(α − β)η2

2

2νβ − (α − β)η2
2

.

Next, we will show that

Tφ = Tψ >

√
2π
√
ν
.
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Note that if η2 → 0, we have that k(η2) → 1−, which implies that K(k(η2)) → +∞. Therefore,
Tφ,Tψ → +∞ as η2 → 0. On the other hand, if η2 →

√
νβ, we have that k(η2) → 0+, which implies

that K(k(η2))→ π
2 . Therefore, Tφ,Tψ →

√
2π
√
ν

as η2 →
√
νβ. Finally, since the function

η2 ∈ (0,
√
νβ) 7→ Tφ(η2) = Tψ(η2)

is a strictly decreasing function (see proof of Theorem 3.2), it follows Tφ = Tψ >
√

2π
√
ν

. Let L > 0, we

choose ν > 0 such that
√
ν >

√
2π
L . By the analysis given above that there exists a unique η2 ≡ η2(ν)

such that the fundamental period of the dnoidal waves

φν = φ(·; η1(ν); η2(ν)) and ψν = ψ(·; η1(ν); η2(ν))

will be Tφν(η2) = Tψν(η2) = L.

Remark 3.1. If η2 → 0+, we obtain that η1 →

√
2ν
α−β

, k(η2) → 1− and dn(x, 1) = sech(x).
Consequently, the formulaes (3.8) and (3.9) lose its periodicity in this limit and we obtain a wave
form with a single hump and with “infinity period”

φ(x;

√
2ν
α − β

, 0)→

√
2ν
α − β

sech(
√
νξ), ψ(x;

√
2ν
α − β

, 0)→ −
2ν
α − β

sech2(
√
νξ),

which are exactly the classical ground state solutions for the coupled Klein-Gordon-Zakharov
equations.

Theorem 3.2. Let L > 0 fixed, consider ν0 >
2π2

L2 and the unique η2,0 = η2(ν0) ∈ (0,
√

ν0
α−β

) such that
Tφν0

= Tψν0
= L. Then,

(1) there exist intervals I(ν0) and B(η2,0) around ν0 and η2,0 respectively, and a unique smooth function
Π : I(ν0)→ B(η2,0) such that Π(ν0) = η2,0 and

2
√

2√
2ν − (α − β)η2

2

K(k) = L,

for all ν ∈ I(ν0), η2 ∈ Π(ν) and

k2 = k2(ν) =
2ν − 2(α − β)η2

2

2ν − (α − β)η2
2

∈ (0, 1).

(2) The dnoidal waves φ(·; η1, η2) and ψ(·; η1, η2) in (3.8) and (3.9) are determined by η1 ≡ η1(ν),
η2 ≡ η2(ν) = Π(ν), with η2

1 + η2
2 = 2ν

α−β
. We have fundamental period L and satisfy (3.2) and (3.5).

Moreover, the mapping

ν ∈ I(ν0) 7→ (φ(·; η1(ν), η2(ν)), ψ(·; η1(ν), η2(ν))) ∈ Hn
per([0, L]) × Hn

per([0, L])

is smooth for all integer n ≥ 1.
(3) I(ν0) can be chosen as (2π2

L2 ,+∞).
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Proof. By applying the implicit function theorem, we prove the Theorem 3.1. In fact, we consider the
open set

Ω = {(η, ν) ∈ R2 : ν >
2π2

L2 and η ∈ (0,
√

ν

α − β
)},

and define Λ : Ω→ R by

Λ(η, ν) =
2
√

2√
2ν − (α − β)η2

K(k) − L, (3.11)

where

k2(η, ν) =
2ν − 2(α − β)η2

2ν − (α − β)η2 . (3.12)

From the hypotheses, we get Λ(η2,0, ν0) = 0. Next, we show that ∂ηΛ < 0 in Ω.
Differentiating (3.12) with respect to η, we have

∂k
∂η

= −
2(α − β)ην

k(2ν − (α − β)η2)2 < 0. (3.13)

Hence, k(η, ν) is a strictly decreasing function of η. Then, from the relation (see [25, 26])

dK(k)
dk

=
E(k) − k′2K(k)

kk′2
, (3.14)

with E = E(k) being the complete elliptic integral of the second type and k′2 = 1 − k2 being the
complementary modulus. Differentiating (3.11) with respect to η, and combining (3.13) with (3.14),
we obtain

∂ηΛ(η, ν) =
2
√

2(α − β)η

(2ν − (α − β)η2)
3
2

K(k) +
2
√

2√
2ν − (α − β)η2

dK
dk

∂k
∂η

=
2
√

2(α − β)η

k2k′2(2ν − (α − β)η2)
5
2

[
k2k′2(2ν − (α − β)η2)K(k) − 2νE(k) + 2νk′2K(k)

]
=

2
√

2(α − β)η

k2k′2(2ν − (α − β)η2)
5
2

[ 4νk′2

1 + k′2
K(k) − 2νE(k)

]
=

2
√

2(α − β)η

(1 + k′2)k2k′2(2ν − (α − β)η2)
5
2

[
2k′2K(k) − (1 + k′2)E(k)

]
. (3.15)

Then, from (3.15), we have

∂Λ

∂η
< 0 ⇔ f (k′) ≡ (1 + k′2)E(

√
1 − k′2) − 2k′2K(

√
1 − k′2) > 0. (3.16)

Since k(η, ν) is a strictly decreasing function of η and k′ =
√

1 − k2, we obtain k′ is a increasing
function of η ∈ (0,

√
νβ) with k′ ∈ (0, 1). Differentiating f with respect to k′ and using the relation

x
dE(x)

dx
= E(x) − K(x) and E(x) < K(x),
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we have

∂ f (k′)
∂k′

= 3k′(E − K) < 0.

Thus, f (k′) is a decreasing function. Since f (1) = 0, we have

f (k′) > f (1) = 0 for k′ ∈ (0, 1),

which shows (3.16) and obtains our affirmation. Therefore, by the implicit function theorem, there
exist an interval I(ν0) around ν0, an interval B(η2,0) around η2,0 and a unique smooth function Λ :
I(ν0)→ B(η2,0) such that

Π(ν0) = η2,0 and Λ(Π(ν), ν) = 0, ∀ν ∈ I(ν0).

So, we can obtain (1) of Theorem 3.2.
Since ν0 is chosen arbitrarily in the interval I = (2π2

L2 ,+∞), from the uniqueness of the function Λ, it
follows that we can extend I(ν0) to (2π2

L2 ,+∞). Using the smoothness of the function involved, we can
immediately obtain part (2).

4. Spectral analysis

In order to prove the orbital stability of dnoidal wave solutions in Section 5, we need to derive two
linear operators L1, L2 and give the spectral analysis of L1 and L2.

Firstly, from the Eq (3.3), we have

(−∂2
x + ν − (α − β)φ2)φ = 0,

and define
L2 = −∂2

x + ν − (α − β)φ2,

which implies L2φ = 0. Next, differentiating (3.3) with respect to x, we have

(−∂2
x + ν − 3(α − β)φ2)φx = 0.

Then, we define the operator
L1 = −∂2

x + ν − 3(α − β)φ2,

that is, L1φx = 0.
Secondly, we turn to study the spectral properties associated to the linear operators

L1 = −∂2
x + ν − 3(α − β)φ2, L2 = −∂2

x + ν − (α − β)φ2, (4.1)

where φ is the dnoidal wave solution (3.8) with the fundamental period L and

ν = 1 − ω2 ∈ (
2π2

L2 ,+∞).

Then, according to Weyl
′

s essential spectrum theorem, Floquet theory [27], and the spectral analysis
in section 4 of [28], we have the following theorem concerning the spectral properties of operators L1

and L2.

AIMS Mathematics Volume 8, Issue 4, 8560–8579.



8569

Theorem 4.1. Let the dnoidal wave solutions φ and ψ given by Theorem 3.2. Then, the operator L1

in (4.1) defined on H2
per([0, L]) with domain L2

per([0, L]) has exactly its first three simple eigenvalues,
where zero eigenvalue is the second one with associated eigenfunction φ′. Moreover, the remainder of
the spectrums are constituted by a discrete set of eigenvalues which are double.

Theorem 4.2. Let the dnoidal wave solutions φ and ψ given by Theorem 3.2. Then, the operator
L2 in (4.1) defined on H2

per([0, L]) with domain L2
per([0, L]) has zero as its first eigenvalue. The zero

eigenvalue is simple and corresponds to the eigenvector φν. Moreover, the remained of the spectrums
are constituted by a discrete set of eigenvalues which are double.

Theorem 4.3. Let L > 0. Consider the smooth curve of dnoidal waves φ, ψ determined by Theorem
3.2. Then for any real function ϕ ∈ H1([0, L]) satisfying

〈ϕ,Ψ0(

√
α − β

2
η1x)〉 = 〈ϕ, φx〉 = 0, (4.2)

there exists a positive number δ > 0 such that

〈L1ϕ, ϕ〉 ≥ δ‖ϕ‖
2
H1([0,L]), (4.3)

where

Ψ0(

√
α − β

2
η1x) = 1 − (1 + k2 −

√
1 − k2 + k4)sn2(

√
α − β

2
η1x) (4.4)

is the negative eigenfunction of L1 [29]with associated negative eigenvalue λ0 defined in Theorem 4.1.

Proof. Combining (3.8), (4.4), dn2(x) + k2sn2(x) = 1, and dn(x + 2K) = dn(x), we have

〈φx,Ψ0(

√
α − β

2
η1x)〉 = 0. (4.5)

Hence, from (4.2), (4.5), and the theory of Lagrange multipliers, there are α, λ and θ such that

L1ϕ = αϕ + λφx + θΨ0(

√
α − β

2
η1x). (4.6)

Since

(L1ϕ, φx) = 0, (ϕ, φx) = 0 and (Ψ0(

√
α − β

2
η1x), φx) = 0,

we have λ = 0. From the fact

L1Ψ0(

√
α − β

2
η1x) = λ0Ψ0(

√
α − β

2
η1x), 〈ϕ,Ψ0(

√
α − β

2
η1x)〉 = 0,

and

0 = λ0〈ϕ,Ψ0(

√
α − β

2
η1x)〉 = 〈L1ϕ,Ψ0(

√
α − β

2
η1x)〉 = θ〈Ψ0(

√
α − β

2
η1x),Ψ0(

√
α − β

2
η1x)〉,

we have θ = 0. From (4.6), we have L1ϕ = αϕ. Hence, if ϕ satisfies the condition (4.2), ϕ is the
eigenfunction of L1 with associated eigenvalue α. From Theorem 4.1, we know L1 has one negative
eigenvalue and one zero eigenvalue. According to the condition (4.2), we have α > 0, and 〈L1ϕ, ϕ〉 =

α〈ϕ, ϕ〉. This completes the proof of Theorem 4.3.
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Theorem 4.4. Let L > 0. Consider the smooth curve of dnoidal waves φ, ψ determined by Theorem
3.2. Then for any real function ϕ ∈ H1([0, L]) satisfying

〈ϕ, φ〉 = 0, (4.7)

there exists a positive number δ1 > 0 such that

〈L2ϕ, ϕ〉 ≥ δ1‖ϕ‖
2
H1([0,L]).

Proof. From Theorem 4.2, we have L2φ = 0. Hence, from (4.7), (4.5), and the theory of Lagrange
multipliers, there are α, λ such that

L2ϕ = αϕ + λφ. (4.8)

Since (L2ϕ, φ) = 0 and (ϕ, φ) = 0, we have λ = 0. Then, from (4.8), we get L2ϕ = αϕ, that is, ϕ is
the eigenfunction of L2 with associated eigenvalue α. Hence, according to Theorem 4.2 and (4.7), it
follows α > 0 and

〈L2ϕ, ϕ〉 = α〈ϕ, ϕ〉 ≥ δ1‖ϕ‖
2
H1([0,L]).

This completes the proof of Theorem 4.4.

5. Orbital stability of dnoidal waves solutions for the coupled Klein-Gordon-Zakharov
equations

In this section, we will prove that the Eq (1.4) is a Hamiltonian system, and satisfies the conditions
of the general orbital stability theory proposed by Grillakis [13].

Let
U = (u, ρ, v, n)T .

The function space in which we shall work is

X = H1
complex([0, L]) × L2

complex([0, L]) × L2
real([0, L]) × L2

real([0, L]),

with inner product

( f , g) =

∫ L

0

(
Re( f1g1) + Re( f1xg1x) + Re( f2g2) + f3g3 + f4g4

)
dx, (5.1)

for
f = ( f1, f2, f3, f4), g = (g1, g2, g3, g4) ∈ X.

The dual space of X is

X∗ = H−1
complex([0, L]) × L2

complex([0, L]) × L2
real([0, L]) × L2

real([0, L]),

there exists a nature isomorphism I: X → X∗ defined by

〈 f , Ig〉 = ( f , g), (5.2)
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where 〈·, ·〉 denotes the pairing between X and X∗

〈 f , g〉 =

∫ L

0

(
Re( f1g1) + Re( f2g2) + f3g3 + f4g4

)
dx. (5.3)

By (5.1)–(5.3), we have

I =


1 − ∂2

∂x2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
Let T be one-parameter groups of unitary operator on X defined by

T (s)U(·) = (eisu, eisρ, v, n)T , for U(·) ∈ X, s ∈ R. (5.4)

Differentiating (5.4) with respect to s at s = 0, we have

T ′(0) =


i 0 0 0
0 i 0 0
0 0 0 0
0 0 0 0

 .
It follows from Theorem 3.2 and (1.5) that there exist solitary waves T (ωt)Φ(x) of (1.3) with Φ(x)

defined by
Φ(x) = (φ(x),−iωφ(x), ψ(x), 0),

where φ(x) and ψ(x) are defined by (3.8) and (3.9), respectively. In the following we shall consider the
orbital stability of periodic standing waves T (ωt)Φ(x) of (1.4). Note that the Eq (1.4) is invariant under
T (·), we define the orbital stability as follows.

Definition 5.1. [13]. The solitary wave solution T (ωt)Φ(x) is orbitally stable, if for every ε > 0, there
exists δ > 0 with the following property: If ‖U0 − Φ(x)‖X < δ and U(t) is a solution of (1.4) in some
interval [0, t0) with U(0) = U0, then U(t) can be continued to a solution in 0 ≤ t < +∞, and

sup
0<t<+∞

inf
s∈R
‖U(t) − T (s)Φ‖X < ε.

Otherwise T (ωt)Φ(x) is called orbitally unstable.
Let us define a functional on X

E(U) =

∫ L

0
(|u|2 + |ρ2| + |ux|

2 + α|u|2v +
β

2
|u|4 +

α

2
v2 +

α

2
n2)dx. (5.5)

By (5.4) and (5.5), we can verify that E(U) is invariant under T , namely,

E(T (s)U) = E(U), for any s ∈ R.

We also have for any t ∈ R, U(t) is a flow of the Eq (1.4)

E(U(t)) = E(U(0)).
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Note that the Eq (1.4) can be written as the following Hamiltonian system

dU
dt

= JE′(U),

where U = (u, ρ, v, n)T and J is a skew-symmetrically linear operator defined by

J =


0 −1

2 0 0
1
2 0 0 0
0 0 0 1

α
∂x

0 0 1
α
∂x 0

 ,
and

E′(U) =


−2uxx + 2u + 2αuv + 2β|u|2u

2ρ
α|u|2 + αv

αn

 (5.6)

is the Fréchet derivative of E.
Differentiating (5.6) with respect to U, we have

E′′(U)η =


(−∂2

x + 2 + 2αv + 2β|u|2)η1 + 4βuRe(uη1) + 2αuη3

2η2

2αRe(uη1) + αη3

αη4

 , (5.7)

where E′′ is the Fréchet derivative of E′, and η = (η1, η2, η3, η4)T .
Let

B =


0 2i 0 0
−2i 0 0 0
0 0 0 0
0 0 0 0

 ,
such that T ′(0) = JB. Then, as in [15, 16], we define the conserved functionals Q(U) as following

Q(U) =
1
2
〈BU,U〉 = −2Im

∫ L

0
uρdx. (5.8)

By (5.4) and (5.8), we can verify that Q(U) is invariant under T , namely,

Q(T (s)U) = Q(U), for any s ∈ R,

and for any t ∈ R, U(t) is a flow of (1.4)

Q(U(t)) = Q(U(0)).

Differentiating (5.8) with respect to U, we have

Q′(U) = BU =


2iρ
−2iu

0
0

 , Q′′(U) = B =


0 2i 0 0
−2i 0 0 0
0 0 0 0
0 0 0 0

 . (5.9)
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Notice that Φ(x) = (φ(x),−iωφ(x), ψ(x), 0) satisfies the Eq (1.6), combining (5.7) and (5.9), we have

E′(Φ) − ωQ′(Φ) =


−2φxx + 2(1 − ω2)φ − 2(α − β)φ3

−2iωφ + 2iωφ
αφ2 + αψ

0

 = 0. (5.10)

Now we define an operator Hω,c from X to X∗ by

Hω = E′′(Φ) − ωQ′′(Φ).

Combining (5.7) and (5.9), we have

Hωη = (E′′(Φ) − ωQ′′(Φ))η

=


2(−∂2

x + 1 + αψ + βφ2)η1 + 4βφRe(φη1) + 2αφη3 − 2iωη2

2η2 + 2iωη1

2αRe(φη1) + αη3

αη4

 , (5.11)

where η = (η1, η2, η3, η4)T . Next, we consider spectral analysis of the operator Hω. Observe that Hω is
self-adjoint in the sense that H∗ω = Hω. This means that I−1Hω is a bounded self-adjoint operator on X.

The spectrum of Hω consists of the real numbers λ such that Hω − λI is not invertible. We claim
that λ = 0 belongs to the spectrum of Hω. Then, for any

η = (η1, η2, η3, η4) ∈ X,

by (5.11), we have

〈Hω,cη, η〉 = Re
∫ L

0
[2(−∂2

x + 1 + αψ + βφ2)η1 + 4βφRe(φη1)) + 2αφη3 − 2iωη2]η1dx

+ Re
∫ L

0
[(2η2 + 2iωη1)η2 + (2αRe(φη1) + αη3)η3 + αη2

4]dx

=

∫ L

0
[2(−∂2

x + 1 + αψ + βφ2)y1 · y1 + 2(−∂2
x + 1 + αψ + βφ2)y2 · y2 + 4βφ2y2

1

+ 2αφy1η3 − 4ωy2y3 + 4ωy1y4 + 2y2
3 + 2y2

4 + 2αφy1η3 + αη2
3 + αη2

4]dx

= 2〈L1y1, y1〉 + 2〈L2y2, y2〉

+

∫ L

0
[α(2φy1 + η3)2 + 2(ωy1 + y4)2 + 2(ωy2 − y3)2 + αη2

4], (5.12)

where
η1 = y1 + iy2, η2 = y3 + iy4,

L1 = −∂2
x + ν − 3(α − β)φ2 and L2 = −∂2

x + ν − (α − β)φ2.

Since the operators L1 and L2 have spectral properties in Theorems 4.1 and 4.2, we have

HωT ′(0)Φ = 0, Hω(iφ, φ, 0, 0) = 0,
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and Hω has a unique simple negative eigenvalue. Let N = {k1Ψ
−} denotes the negative eigenspace of

Hω, where Ψ− is the negative eigenfunction of Hω, k1 ∈ R/{0}. Z = {k2T ′(0)Φ+ k3ϕ} denotes the kernel
of the operator Hω, where ϕ = (iφ, φ, 0, 0), k2, k3 ∈ R. Furthermore, let

P = {p ∈ X|p = (p11 + ip12, p21 + ip22, p3, p4), 〈p11,Ψ0(

√
α − β

2
η1x)〉

= 〈p11, φx〉 = 〈p12, φ〉} = 0. (5.13)

Combining Theorems 4.2–4.4 with (5.12), we get that the following Lemma 5.1 holds.

Lemma 5.2. For any α > 0 and ζ ∈ P, there exists a constant δ > 0 such that

〈Hωζ, ζ〉 ≥ δ‖ζ‖
2
X,

where δ is independent of ζ.
According to the above analysis, when α > 0, α > β, we can get that the space X can be decomposed

as a direct sum, that is, the following Assumption 5.3 holds.

Assumption 5.3. [13] (Spectral decomposition of Hω) The space X is decomposed as a direct sum

X = N + Z + P,

where Z is the kernel of Hω, N is a finite-dimensional subspace such that

〈HωU,U〉 < 0, for 0 , U ∈ N,

and P is a closed subspace such that

〈HωU,U〉 ≥ δ‖U‖2X, for U ∈ P,

with some constant δ > 0 independent of U. Then, for any U ∈ X, U = (u1, u2, u3, u4)T , choose

a =
〈U,Ψ−〉
〈Ψ−,Ψ−〉

, b1 =
〈U,T ′(0)Φ〉

〈T ′(0)Φ,T ′(0)Φ〉
, b2 =

〈U, ϕ〉
〈ϕ, ϕ〉

,

and then U can be uniquely represented by

U = aΨ− + b1T ′(0)Φ + b2ϕ + p0,

where p0 ∈ P.
We now define d(ω): R→ R by

d(ω) = E(Φ) − ωQ(Φ), (5.14)

and define d′′(ω) to be function d(ω) with respect ω.

We know that J is not onto, the abstract stability theory in [14] cannot be applied directly.
But, according to the “stability theorem” in the introduction of [13] or the lines of proofs in [13],

Sections 3 and 4, we can obtain the following abstract orbital stability theorem for the solitary waves
of the Eq (1.4).
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Theorem 5.4. Assume that there exists the periodic standing waves T (ωt)Φ(x) of the Eq (1.4) and
Assumption 5.3 holds. If d(ω) is convex in a neighborhood of ω (in other words d′′(ω) > 0), then
solution T (ωt)Φ(x) is orbitally stable.

From Theorem 5.4, the main results about orbital stability of the periodic standing waves for the
Eq (1.4) can be given as follows.

Theorem 5.5. Let α > 0, α > β, 1 − ω2 > 2π2

L2 , then
(i) If L > 2π, we have T (ωt)Φ(x) is orbital stability for some interval |ω| ∈ ( 1

√
2
, 1
√

2
+ ε).

(ii) If L >
√

5π, we get that T (ωt)Φ(x) is orbital stability for√
−

M(k0)
N(k0)

≤ |ω| ≤

√
1 −

2π2

L2 ,

where k0 is the solution of 4(2−k2)K2(k)N(k)
M(k)+N(k) = L2.

Proof. According to Theorem 5.4, we need to find conditions that satisfy d′′(ω) > 0 under α > 0,
α > β, 1 − ω2 > 2π2

L2 .
However, since J is not onto, we can’t apply GSS theory [13,14] to study the orbital instability of

standing waves in the case d′′(ω) < 0. Here, we only give conclusions of orbital stability.
Combining (5.8), (5.10) and (5.14), and using the formula∫ K

0
dn2(x)dx = E(k),

we have

d′(ω) = −Q(Φ) = 2Im
∫ L

0
φρdx = −2ω

∫ L

0
φ2dx = −2ωη2

1

∫ L

0
dn2(η1

√
α − β

2
x, k)dx

= −4ωη1

√
2

α − β

∫ K

0
dn2(x)dx = −

16ω
L(α − β)

KE. (5.15)

Differentiating (5.15) with respect to ω, we get

d′′(ω) = −
16

L(α − β)
KE +

32ω2

L(α − β)
d(KE)

dk
dk
dν
. (5.16)

From (3.12) and η2
2 =

2ν(1−k2)
(2−k2)(α−β) , we have

∂k
∂ν

=
(α − β)η2(η2 − 2∂η2

∂ν
ν)

k(2ν − (α − β)η2
2)2

,

and

(α − β)η2
∂η2

∂ν
=

K − dK
dk

dk
dν (2ν − (α − β)η2

2)
K

.
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Then, it follows

∂k
∂ν

=
K

2ν dK
dk − kK(2ν − (α − β)η2

2)
. (5.17)

Combining (5.16) and (5.17), with the formula

dK
dk

=
E − (1 − k2)K

k(1 − k2)
,

dE
dk

=
E − K

k
,

we obtain

d′′(ω) = −
16K

L(α − β)
[E − 2ω2 E2 − (1 − k2)K2

k(1 − k2)
·

1

2ν( E−(1−k2)K
k(1−k2) − kK +

(1−k2)kK
2−k2 )

]

=
16K

L(α − β)
·

[2(1 − k2)KE − (2 − k2)E2] + ω2[2(2 − k2)E2 − 2(1 − k2)KE − (2 − k2)(1 − k2)K2]
ν[(2 − k2)E − 2(1 − k2)K]

.

For simplicity, we let
M(k) = 2(1 − k2)KE − (2 − k2)E2,

N(k) = 2(2 − k2)E2 − 2(1 − k2)KE − (2 − k2)(1 − k2)K2,

then

d′′(ω) =
16K

L(α − β)
·

M(k) + ω2N(k)
ν[(2 − k2)E − 2(1 − k2)K]

.

Since ν[(2 − k2)E − 2(1 − k2)K] > 0, then the sign of d′′(ω) depends on the sign of M(k) + ω2N(k).
According to Theorem 5.1 and n(Hω) = 1, we have stability for 1 > ω2 > −M(k)

N(k) , that is,

4(2 − k2)K2(k)
L2 = 1 − ω2 < 1 +

M(k)
N(k)

, (5.18)

from ν = 1 − ω2, 2
√

2√
2ν−(α−β)η2

2

K(k) = L, and k2 =
2ν−2(α−β)η2

2
2ν−(α−β)η2

2
. The inequality (5.18) can transfer to

consider

f (k) =
4(2 − k2)K2(k)N(k)

M(k) + N(k)
< L2, (5.19)

f (k) is an increasing function. Then, using the analysis similar to [12] and the Mathematica, we get
that T (ωt)Φ(x) is orbital stability for√

−
M(k0)
N(k0)

≤ |ω| ≤

√
1 −

2π2

L2 , (5.20)

as L >
√

5π, where k0 is the solution of 4(2−k2)K2(k)N(k)
M(k)+N(k) = L2.
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Remark 5.6. When L → ∞, the formulaes (3.8) and (3.9) lose its periodicity in this limit and we
obtain a wave form with a single hump and with infinity periodi of the form

φ(x) =

√
2(1 − ω2)
α − β

sech(
√

(1 − ω2)x), ψ(x) = −
2ν
α − β

sech2(
√

1 − ω2x),

and lim
L→∞

k0(L) = 1, lim
L→∞

√
−

M(k0)
N(k0) = 1

√
2
.

Hence, for all 1 > |ω| > 1
√

2
, the solutions (eiωt

√
2(1−ω2)
α−β

sech(
√

(1 − ω2)x),− 2ν
α−β

sech2(
√

1 − ω2x))
are orbitally stable. Therefore, we also obtain stability of sech-type standing waves for Eq (1.1).

6. Conclusions

In this work, we are interested in studying the stability of the periodic standing waves for coupled
Klein-Gordon-Zakharov Eq (1.1). The abstract orbital stability theory presented by Grillakis et al. [14]
cannot be applied directly. However, combining the extension version of the general theory of orbital
stability [13] and detailed spectral analysis and Floquet theory, and we obtain the orbital stability of
periodic traveling waves of the Eq (1.4). In addition, we consider the novel situation of period L→ ∞,
and dnoidal type turns into sech type in the case of limit. Then, we obtain stability of sech type standing
waves. In our study, β = 0, α = 1 also satisfy conditions of Theorem 5.5. So, we also can get the the
stability of the dnoidal type and sech type standing waves for the classical Klein-Gordon-Zakharov
Eq (1.2). Obviously, our work further extends and improves the interesting results of [11, 12].

In addition, the periodic solution T (ωt)Φ(x) is orbital stability in the conditions of L >
√

5π and
1 − ω2 > 2π2

L2 in this paper, but we don’t obtain the concrete stable result of periodic solution for the
case L =

√
5π. In future work, we will analyze such an open problem.
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