Research article

Phase transition for piecewise linear fibonacci bimodal map

  • Received: 22 September 2022 Revised: 17 January 2023 Accepted: 19 January 2023 Published: 03 February 2023
  • MSC : 37E05, 37A10

  • In this paper we concern with the Fibonacci bimodal maps. We first study the topological properties of the Fibonacci bimodal maps in the context of kneading map and give an equivalent description of Fibonacci combinatorics. Then we construct a one-parameter family $ f_{\lambda} $ of countably piecewise linear Fibonacci bimodal maps depending on the parameter $ \lambda $ which are all odd functions. By a random walk argument on its induced Markov map, we will show that a phase transition occurs from Lebesgue conservative to Lebesgue dissipative behaviors.

    Citation: Haoyang Ji, Wenxiu Ma. Phase transition for piecewise linear fibonacci bimodal map[J]. AIMS Mathematics, 2023, 8(4): 8403-8430. doi: 10.3934/math.2023424

    Related Papers:

  • In this paper we concern with the Fibonacci bimodal maps. We first study the topological properties of the Fibonacci bimodal maps in the context of kneading map and give an equivalent description of Fibonacci combinatorics. Then we construct a one-parameter family $ f_{\lambda} $ of countably piecewise linear Fibonacci bimodal maps depending on the parameter $ \lambda $ which are all odd functions. By a random walk argument on its induced Markov map, we will show that a phase transition occurs from Lebesgue conservative to Lebesgue dissipative behaviors.



    加载中


    [1] B. Branner, J. H. Hubbard, The iteration of cubic polynomials I, Acta Math., 160 (1988), 143–206.
    [2] H. Bruin, Topological conditions for the existence of absorbing Cantor sets, Trans. Amer. Math. Soc., 350 (1998), 2229–2263.
    [3] H. Bruin, G. Keller, T. Nowicki, S. van Strien, Wild Cantor attractors exist, Ann. Math., 143 (1996), 97–130. https://doi.org/10.2307/2118654 doi: 10.2307/2118654
    [4] H. Bruin, M. Todd, Transience and thermodynamic formalism for infinitely branched interval maps, J. London Math. Soc., 86 (2012), 171–194. https://doi.org/10.1112/jlms/jdr081 doi: 10.1112/jlms/jdr081
    [5] H. Bruin, M. Todd, Wild attractors and thermodynamic formalism, Monatsh. Math. 178 (2015), 39–83. https://doi.org/10.1007/s00605-015-0747-2 doi: 10.1007/s00605-015-0747-2
    [6] H. Bruin, W. Shen, S. van Strien, Invariant measure exists without a growth condition, Commun. Math. Phys., 241 (2003), 287–306. https://doi.org/10.1007/s00220-003-0928-z doi: 10.1007/s00220-003-0928-z
    [7] F. Hofbauer, G. Keller, Some remarks on recent results about S-unimodal maps, Ann. Inst. Henri Poincaré, 53 (1990), 413–425.
    [8] H. Ji, S. Li, The attractor of Fibonacci-like renormalization operator, Acta Math. Sin., English Ser., 36 (2020), 1256–1278. https://doi.org/10.1007/s10114-020-9185-8 doi: 10.1007/s10114-020-9185-8
    [9] H. Ji, W. Ma, Decay of geometry for a class of cubic polynomials, Preprint.
    [10] G. Keller, T. Nowicki, Fibonacci maps re(al)-visited, Ergod. Theor. Dyn. Sys., 15 (1995), 99–120. https://doi.org/10.1017/S0143385700008269 doi: 10.1017/S0143385700008269
    [11] M. Lyubich, J. Milnor, The Fibonacci unimodal map, J. Amer. Math. Soc., 6 (1993), 425–457.
    [12] M. Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. Math., 140 (1994), 347–404. https://doi.org/10.2307/2118604 doi: 10.2307/2118604
    [13] W. de Melo, S. van Strien, One-dimensional dynamics, Springer-Verlag, Berlin, 1993.
    [14] M. L. Nascimento, R. J. S. Mota, The importance of Fibonacci combinatorics for dynamic systems in the interval and in the circle and applications, Eur. Int. J. Sci. Technol., 10 (2021), 82–96.
    [15] W. Shen, On the metric properties of multimodal interval maps and $C^2$ density of Axiom A, Invent. Math., 156 (2004), 301–403. https://doi.org/10.1007/s00222-003-0343-2 doi: 10.1007/s00222-003-0343-2
    [16] E. Straube, On the existence of invariant absolutely continuous measures, Commun. Math. Phys., 81 (1981), 27–30. https://doi.org/10.1007/BF01941798 doi: 10.1007/BF01941798
    [17] A. K. Supriatna, E. Carnia, M. Z. Ndii, Fibonacci numbers: a population dynamics perspective, Heliyon, 5 (2019), e01130. https://doi.org/10.1016/j.heliyon.2019.e01130 doi: 10.1016/j.heliyon.2019.e01130
    [18] G. Światek, E. Vargas, Decay of geometry in the cubic family, Ergod. Theor. Dyn. Sys., 18 (1998), 1311–1329. https://doi.org/10.1017/S0143385798117558 doi: 10.1017/S0143385798117558
    [19] E. Vargas, Fibonacci bimodal maps, Discrete Contin. Dyn. Sys., 22 (2008), 807–815.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1071) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog