Research article Special Issues

A fuzzy logic and DEEC protocol-based clustering routing method for wireless sensor networks

  • Received: 13 November 2022 Revised: 15 December 2022 Accepted: 27 December 2022 Published: 02 February 2023
  • Power-efficient wireless sensor network routing techniques (WSN). Clustering is used to extend WSNs' lifetimes. One node act as the cluster head (CH) to represent the others in communications. The member nodes are less important than the cluster hub (CH) in the clustering procedure. Fuzzy techniques based on clustering theory may provide evenly distributed loads. In this study, we provide a fuzzy-logic-based solution that factors in distance to base station (BS), number of nodes, remaining energy, compactness, distance to communicate within a cluster, number of CH, and remaining energy. Fuzzy clustering has a preliminary and final step. First, we select CH based on distance to the base station (BS), remaining node vigor, and node compactness. In the second phase, clusters are created by combining nodes that aren't already in a CH, using density, outstanding vigor, and detachment as limitations. The proposed solution increases load balancing and node longevity. This work provides a unique hybrid routing technique for forming clusters and managing data transfer to the base station. Simulation findings confirm the protocol's functionality and competence. Reduced energy use keeps network sensor nodes online longer. The framework outperforms Stable Election Protocol (SEP), hybrid energy-efficient distributed clustering (HEED), and Low Energy Adaptive Clustering Hierarchy (LEACH). Using the nodes' energy levels to create a grid pattern for the clusters gave four clusters. In addition, the proposed method has a 4347%, 41.46%, 39.26%, 37.57% and 35.67% reduction in average energy consumption when compared with the conventional algorithms. The proposed technologies could increase the network's lifetime, stability interval, packet transfer rate (throughput), and average energy. The suggested protocol is at least 50% better in every statistic that was looked at, such as network lifetime, stability interval, packet transmission rate (throughput), and average energy use.

    Citation: Neelakandan Subramani, Abbas Mardani, Prakash Mohan, Arunodaya Raj Mishra, Ezhumalai P. A fuzzy logic and DEEC protocol-based clustering routing method for wireless sensor networks[J]. AIMS Mathematics, 2023, 8(4): 8310-8331. doi: 10.3934/math.2023419

    Related Papers:

  • Power-efficient wireless sensor network routing techniques (WSN). Clustering is used to extend WSNs' lifetimes. One node act as the cluster head (CH) to represent the others in communications. The member nodes are less important than the cluster hub (CH) in the clustering procedure. Fuzzy techniques based on clustering theory may provide evenly distributed loads. In this study, we provide a fuzzy-logic-based solution that factors in distance to base station (BS), number of nodes, remaining energy, compactness, distance to communicate within a cluster, number of CH, and remaining energy. Fuzzy clustering has a preliminary and final step. First, we select CH based on distance to the base station (BS), remaining node vigor, and node compactness. In the second phase, clusters are created by combining nodes that aren't already in a CH, using density, outstanding vigor, and detachment as limitations. The proposed solution increases load balancing and node longevity. This work provides a unique hybrid routing technique for forming clusters and managing data transfer to the base station. Simulation findings confirm the protocol's functionality and competence. Reduced energy use keeps network sensor nodes online longer. The framework outperforms Stable Election Protocol (SEP), hybrid energy-efficient distributed clustering (HEED), and Low Energy Adaptive Clustering Hierarchy (LEACH). Using the nodes' energy levels to create a grid pattern for the clusters gave four clusters. In addition, the proposed method has a 4347%, 41.46%, 39.26%, 37.57% and 35.67% reduction in average energy consumption when compared with the conventional algorithms. The proposed technologies could increase the network's lifetime, stability interval, packet transfer rate (throughput), and average energy. The suggested protocol is at least 50% better in every statistic that was looked at, such as network lifetime, stability interval, packet transmission rate (throughput), and average energy use.



    加载中


    [1] A. Giorgetti, M. Lucchi, E. Tavelli, M. Barla, G. Gigli, N. Casagli, et al., A robust wireless sensor network for landslide risk analysis: System design, deployment, and field testing, IEEE Sens. J., 16 (2016), 6374–6386. https://doi.org/10.1109/JSEN.2016.2579263 doi: 10.1109/JSEN.2016.2579263
    [2] B. Rashid, M. H. Rehmani, Applications of wireless sensor networks for urban areas: A survey, J. Netw. Comput. Appl., 60 (2016), 192–219. https://doi.org/10.1016/j.jnca.2015.09.008 doi: 10.1016/j.jnca.2015.09.008
    [3] S. Lindsey, C. S. Raghavendra, PEGASIS: Power-efficient gathering in sensor information systems, Proceedings, IEEE Aerospace Conference Proceedings, 2002, 3. https://doi.org/10.1109/AERO.2002.1035242 doi: 10.1109/AERO.2002.1035242
    [4] M. M. Shurman, M. Al-Mistarihi, K. Drabkh, A. Naji, Hierarchal clustering using genetic algorithm in wireless sensor networks, 2013 36th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO2013), 2013,479–483.
    [5] J. Suhonen, M. Kohvakka, V. Kaseva, T. D. Hämäläinen, M. Hännikäinen, Low-power wireless sensor networks: Protocols, services and applications, Springer: Berlin, 2012.
    [6] M. M. Shurman, Z. Alomari, K. Mhaidat, An efficient billing scheme for trusted nodes using fuzzy logic in wireless sensor networks, Wireless Eng. Technol., 5 (2014), 62–73. http://doi.org/10.4236/wet.2014.53008 doi: 10.4236/wet.2014.53008
    [7] P. Subbulakshmi, P. Mohan, Mitigating eavesdropping by using fuzzy based mdpop-q learning approach and multilevel stackelberg game theoretic approach in wireless CRN, Cogn. Syst. Res., 52 (2018), 853–861. http://doi.org/10.1016/j.cogsys.2018.09.021 doi: 10.1016/j.cogsys.2018.09.021
    [8] M. R. Senouci, A. Mellouk, M. A. Senouci, L. Oukhellou, Belief functions in telecommunications and network technologies: An overview, Ann. Telecommun., 69 (2014), 135–145. https://doi.org/10.1007/s12243-014-0428-5 doi: 10.1007/s12243-014-0428-5
    [9] N. Subramani, P. Mohan, Y. Alotaibi, S. Alghamdi, O. I. Khalaf, An efficient metaheuristic-based clustering with routing protocol for underwater wireless sensor networks, Sensors, 22 (2022), 415. http://doi.org/10.3390/s22020415 doi: 10.3390/s22020415
    [10] Z. S. Fei, B. Li, S. S. Yang, C. W. Xing, H. B. Chen, L. Hanzo, A survey of multi-objective optimization in wireless sensor networks: Metrics, algorithms, and open problems, IEEE Commun. Surv. Tut., 19 (2017), 550–586. https://doi.org/10.1109/COMST.2016.2610578 doi: 10.1109/COMST.2016.2610578
    [11] R. Elavarasan K. Chitra, An efficient fuzziness based contiguous node refining scheme with cross-layer routing path in WSN, Peer Peer Netw. Appl., 13 (2020), 2099–2111. https://doi.org/10.1007/s12083-019-00825-0 doi: 10.1007/s12083-019-00825-0
    [12] R. K. Poluru, M. P. K. Reddy, S. M. Basha, R. Patan, S. Kallam, Enhanced adaptive distributed energy-efficient clustering (EADEEC) for wireless sensor networks, Recent Adv. Comput. Sci. Commun., 13 (2020), 168–172. https://doi.org/10.2174/2213275912666190404162447 doi: 10.2174/2213275912666190404162447
    [13] P. H. Xie, M. Lv, J. J. Zhao, An improved energy-low clustering hierarchy protocol based on ensemble algorithm, Concurr. Comp.: Pract. E., 32 (2019), e5575. https://doi.org/10.1002/cpe.5575 doi: 10.1002/cpe.5575
    [14] C. Zhu, S. Wu, G. J. Han, L. Shu, H. Y. Wu, A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink, IEEE Access, 3 (2015), 381–396. https://doi.org/10.1109/ACCESS.2015.2424452 doi: 10.1109/ACCESS.2015.2424452
    [15] A. Daniel, K. M. Balamurugan, R. Vijay, K. Arjun, Energy aware clustering with multihop routing algorithm for wireless sensor networks, Intell. Autom. Soft Comput., 29 (2021), 233–246.
    [16] H. Li, J. Liu, Double cluster-based energy efficient routing protocol for wireless sensor network, Int. J. Wireless Inf. Netw., 23 (2016), 40–48. https://doi.org/10.1007/s10776-016-0300-9 doi: 10.1007/s10776-016-0300-9
    [17] B. Balakrishnan, S. Balachandran, FLECH: Fuzzy logic-based energy efficient clustering hierarchy for non-uniform wireless sensor networks, Wirel. Commun. Mob. Comput., 2017 (2017), 1214720. http://doi.org/10.1155/2017/1214720 doi: 10.1155/2017/1214720
    [18] T. Y. Kord, M. U. Bokhari, SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network, Wireless Netw., 22 (2016), 647–653. https://doi.org/10.1007/s11276-015-0997-x doi: 10.1007/s11276-015-0997-x
    [19] F. A. Khan, A. Ahmad, M. Imran, Energy optimization of PR-LEACH routing scheme using distance awareness in internet of things networks, Int. J. Parallel Prog., 48 (2018), 244–263. https://doi.org/10.1007/s10766-018-0586-6 doi: 10.1007/s10766-018-0586-6
    [20] M. M. Shurman, Z. Alomari, K. Mhaidat, K. An efficient billing scheme for trusted nodes using fuzzy logic in wireless sensor networks, J. Wirel. Eng. Technol., 5 (2014), 62–73. https://doi.org/10.4236/wet.2014.53008 doi: 10.4236/wet.2014.53008
    [21] A. Jain, A. K. Goel, Energy efficient fuzzy routing protocol for wireless sensor networks, Wireless Pers. Commun., 110 (2020), 1459–1474. https://doi.org/10.1007/s11277-019-06795-z doi: 10.1007/s11277-019-06795-z
    [22] L. Zhao, Z. G. Bi, A. Hawbani, K. P. Yu, Y. Zhang, Y. Guizani, ELITE: An intelligent digital twin-based hierarchical routing scheme for softwarized vehicular networks, IEEE T. Mobile Comput., 2022. https://doi.org/10.1109/TMC.2022.3179254 doi: 10.1109/TMC.2022.3179254
    [23] G. Sun, Y. H. Liu, S. Liang, Z. Y. Chen, A. M. Wang, Q.A. Ju, et al., A sidelobe and energy optimization array node selection algorithm collaborative beamforming in wireless sensor networks, IEEE Access, 6 (2018), 2515–2530. https://doi.org/10.1109/ACCESS.2017.2783969 doi: 10.1109/ACCESS.2017.2783969
    [24] L. Zhao, Z. H. Yin, K. P. Yu, X. Y. Tang, L. X. Xu, Z. Z. Guo, et al., A fuzzy logic based intelligent multi-attribute routing scheme for two-layered SDVNs, IEEE T. Netw. Serv. Man., 2022. https://doi.org/10.1109/TNSM.2022.3202741 doi: 10.1109/TNSM.2022.3202741
    [25] E. Moharamkhani, B. Zadmehr, M. Mohammad, J. Saber, M. Shokouhifar, Multiobjective fuzzy knowledge-based bacterial foraging optimization for congestion control in clustered wireless sensor networks, Int. J. Commun. Syst., 34 (2021), e4949. https://doi.org/10.1002/dac.4949 doi: 10.1002/dac.4949
    [26] M. Shokouhifar, A. Jalali, Optimized sugeno fuzzy clustering algorithm for wireless sensor networks, Eng. Appl. Artif. Intel., 60 (2017), 16–25. https://doi.org/10.1016/j.engappai.2017.01.007 doi: 10.1016/j.engappai.2017.01.007
    [27] M. Shokouhifar, FH-ACO: Fuzzy heuristic-based ant colony optimization for joint virtual network function placement and routing, Appl. Soft Comput., 107 (2021), 107401. https://doi.org/10.1016/j.asoc.2021.107401 doi: 10.1016/j.asoc.2021.107401
    [28] M. Sohrabi, M. Zandieh, M. Shokouhifar, Sustainable inventory management in blood banks considering health equity using a combined metaheuristic-based robust fuzzy stochastic programming, Socio-Econ. Plan. Sci., 2022, In press. https://doi.org/10.1016/j.seps.2022.101462
    [29] H. Esmaeili, V. Hakami, B. Minaei Bidgoli, M. Shokouhifar, Application-specific clustering in wireless sensor networks using combined fuzzy firefly algorithm and random forest, Expert Syst. Appl., 210 (2022), 118365. https://doi.org/10.1016/j.eswa.2022.118365 doi: 10.1016/j.eswa.2022.118365
    [30] K. Shaukat, F. Iqbal, I. A. Hameed, M. U. Hassan, S. H. Luo, R. Hassan, et al., MAC Protocols 802.11: A comparative study of throughput analysis and improved LEACH, 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology (ECTI-CON), 2020,421–426. https://doi.org/10.1109/ECTI-CON49241.2020.9158097 doi: 10.1109/ECTI-CON49241.2020.9158097
    [31] M. U. Hassan, M. Shahzaib, K. Shaukat, S. N. Hussain, M. Mubashir, S. Karim, et al., DEAR-2: An energy-aware routing protocol with guaranteed delivery in wireless ad-hoc networks, In: Recent trends and advances in wireless and IoT-enabled networks, Springer: Cham, 2019. https://doi.org/10.1007/978-3-319-99966-1_20
    [32] B. M. Hardas, S. B. Pokle, Optimization of peak to average power reduction in OFDM, J. Commun. Technol. Electron., 62 (2017), 1388–1395. https://doi.org/10.1134/S1064226917140017 doi: 10.1134/S1064226917140017
    [33] I. Javed, X. L. Tang, K. Shaukat, M. U. Sarwar, T. M. Alam, I. A. Hameed, et al., V2X-based mobile localization in 3D wireless sensor network, Secur. Commun. Netw., 2021 (2021), 6677896. https://doi.org/10.1155/2021/6677896 doi: 10.1155/2021/6677896
    [34] B. Pokle, Analysis of OFDM system using DCT-PTS-SLM based approach for multimedia applications, Cluster Comput., 22 (2019), 4561–4569. https://doi.org/10.1007/s10586-018-2140-0 doi: 10.1007/s10586-018-2140-0
    [35] K. Shaukat, F. Iqbal, T. Mahboob A. Shaukat, The impact of artificial intelligence and robotics on the future employment opportunities, Trends Comput. Sci. Inf. Technol., (2020), 50–54. https://doi.org/10.17352/tcsit/000022 doi: 10.17352/tcsit/000022
    [36] M. Hatamian, M. Almasi Bardmily, M. Asadboland, M. Hatamian, H. Barati, Congestion-aware routing and fuzzy-based rate controller for wireless sensor networks, Radio Eng., 25 (2016), 114–123. https://doi.org/10.13164/re.2016.0114 doi: 10.13164/re.2016.0114
    [37] M. Hatamian, H. Barati, A. Movaghar, CGC: Centralized genetic-based clustering protocol for wireless sensor networks using onion approach, Telecommun. Syst., 62 (2016), 657–674. https://doi.org/10.1007/s11235-015-0102-x doi: 10.1007/s11235-015-0102-x
    [38] E. Hasheminejad, H. Barati, A reliable tree-based data aggregation method in wireless sensor networks, Peer Peer Netw. Appl., 14 (2021), 873–887. https://doi.org/10.1007/s12083-020-01025-x doi: 10.1007/s12083-020-01025-x
    [39] H. Barati, A. Movaghar, A. Barati, A. Z. Arash, A review of coverage and routing for wireless sensor networks, Int. J. Electron. Commun. Eng., 2 (2008), 67–73.
    [40] E. Ghorbani Dehkordi, H. Barati, Cluster based routing method using mobile sinks in wireless sensor network, Int. J. Electron., 110 (2023), 360–372. https://doi.org/10.1080/00207217.2021.2025451 doi: 10.1080/00207217.2021.2025451
    [41] E. Kiamansouri, H. Barati, A. Barati, A two-level clustering based on fuzzy logic and content-based routing method in the internet of things, Peer Peer Netw. Appl., 15 (2022), 2142–2159. https://doi.org/10.1007/s12083-022-01342-3 doi: 10.1007/s12083-022-01342-3
    [42] M. Revanesh, V. Sridhar, M. A. John, CB-ALCA: A cluster-based adaptive lightweight cryptographic algorithm for secure routing in wireless sensor networks, Int. J. Inf. Comput. Secur., 11 (2019), 637–662. https://doi.org/10.1504/IJICS.2019.103108 doi: 10.1504/IJICS.2019.103108
    [43] C. Omar, A. Koubaa, A. Zarrad, A cloud based disaster management system, J. Sens. Actuator Netw., 9 (2020), 6. https://doi.org/10.3390/jsan9010006 doi: 10.3390/jsan9010006
    [44] P. Subbulakshmi, V. Ramalakshmi, Honest auction based spectrum assignment and exploiting spectrum sensing data falsification attack using stochastic game theory in wireless cognitive radio network, Wireless Pers. Commun., 102 (2018), 799–816. http://doi.org/10.1007/s11277-017-5105-3 doi: 10.1007/s11277-017-5105-3
    [45] L. Qing, Q. X. Zhu, M. W. Wang, Design of a distributed energy efficient clustering algorithm for heterogeneous wireless sensor networks, Comput. Commun., 29 (2006), 2230–2237. https://doi.org/10.1016/j.comcom.2006.02.017 doi: 10.1016/j.comcom.2006.02.017
    [46] A. R. Suhas, M. M. Priyatham, Lifetime and energy efficiency improvement techniques for hierarchical networks, IJEAT, 9 (2019), 62–72, 2019. https://doi.org/10.35940/ijeat.A1013.1291S619 doi: 10.35940/ijeat.A1013.1291S619
    [47] S. Neelakandan, M. Prakash, B. T. Geetha, A. K. Nanda, A. M. Metwally, M. Santhamoorthy, et al., Metaheuristics with deep transfer learning enabled detection and classification model for industrial waste management, Chemosphere, 308 (2022), 136046. https://doi.org/10.1016/j.chemosphere.2022.136046 doi: 10.1016/j.chemosphere.2022.136046
    [48] K. Lakshmanna, N. Subramani, Y. Alotaibi, S. Alghamdi, O. I. Khalafand, A. K. Nanda, Improved metaheuristic-driven energy-aware cluster-based routing scheme for iot-assisted wireless sensor networks, Sustainability, 14 (2022), 7712. http://doi.org/10.3390/su14137712 doi: 10.3390/su14137712
    [49] A. M. Bongale, C. R. Nirmala, A. M. Bongale, Hybrid cluster head election for WSN based on firefly and harmony search algorithms, Wireless Pers. Commun., 106 (2019), 275–306. https://doi.org/10.1007/s11277-018-5780-8 doi: 10.1007/s11277-018-5780-8
    [50] N. Moussa, Z. Hamidi-Alaoui, A. E. B. El Alaoui, ECRP: An energy-aware cluster-based routing protocol for wireless sensor networks, Wireless Netw., 26 (2020), 2915–2928. https://doi.org/10.1007/s11276-019-02247-5 doi: 10.1007/s11276-019-02247-5
    [51] D. K. Jain, X. Liu, N. Subramani, P. Mohan, Modeling of human action recognition using hyperparameter tuned deep learning model, J. Electron. Imaging, 32 (2022), 011211. http://doi.org/10.1117/1.JEI.32.1.011211 doi: 10.1117/1.JEI.32.1.011211
    [52] M. Singh, P. M. Khilar, A range free geometric technique for localization of wireless sensor network (WSN) based on controlled communication range, Wireless Pers. Commun., 94 (2017), 1359–1385. https://doi.org/10.1007/s11277-016-3686-x doi: 10.1007/s11277-016-3686-x
    [53] K. Shaukat, S. H. Luo, V. Varadharajan, A novel method for improving the robustness of deep learning-based malware detectors against adversarial attacks, Eng. Appl. Artif. Intell., 116 (2022), 105461. https://doi.org/10.1016/j.engappai.2022.105461 doi: 10.1016/j.engappai.2022.105461
    [54] K. Shaukat, S. H. Luo, S. Chen, D. X. Liu, Cyber threat detection using machine learning techniques: A performance evaluation perspective, 2020 International Conference on Cyber Warfare and Security (ICCWS), 2020. http://doi.org/10.1109/ICCWS48432.2020.9292388 doi: 10.1109/ICCWS48432.2020.9292388
    [55] S. Messous, H. Liouane, Online sequential DV-hop localization algorithm for wireless sensor networks, Mob. Inf. Syst., 2020 (2020), 8195309. https://doi.org/10.1155/2020/8195309 doi: 10.1155/2020/8195309
    [56] Y. Alotaibi, S. Alghamdi, O. I. Khalaf, U. Sakthi, Improved metaheuristics-based clustering with multihop routing protocol for underwater wireless sensor networks, Sensors, 22 (2022), 1618. http://doi.org/10.3390/s22041618 doi: 10.3390/s22041618
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2113) PDF downloads(158) Cited by(18)

Article outline

Figures and Tables

Figures(8)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog