Research article Special Issues

Multi-objective optimization model for uncertain crop production under neutrosophic fuzzy environment: A case study

  • Received: 26 October 2022 Revised: 21 December 2022 Accepted: 23 December 2022 Published: 17 January 2023
  • MSC : 90C29, 90C70, 90C90

  • In real world uncertainty exist in almost every problem. Decision-makers are often unable to describe the situation accurately or predict the outcome of potential solutions due to uncertainty. To resolve these complicated situations, which include uncertainty, we use expert descriptive knowledge which can be expressed as fuzzy data. Pakistan, a country with a key geographic and strategic position in South Asia, relies heavily on irrigation for its economy, which involves careful consideration of the limits. A variety of factors can affect yield, including the weather and water availability. Crop productivity from reservoirs and other sources is affected by climate change. The project aims to optimize Kharif and Rabbi crop output in canal-irrigated areas. The optimization model is designed to maximize net profit and crop output during cropping seasons. Canal-connected farmed areas are variables in the crop planning model. Seasonal crop area, crop cultivated area, crop water requirement, canal capacity, reservoir evaporation, minimum and maximum storage, and overflow limits affect the two goals. The uncertainties associated with the entire production planning are incorporated by considering suitable membership functions and solved using the Multi-Objective Neutrosophic Fuzzy Linear Programming Model (MONFLP). For the validity and effectiveness of the technique, the model is tested for the wheat and rice production in Pakistan. The study puts forth the advantages of neutrosophic fuzzy algorithm which has been proposed, and the analyses derived can be stated to deal with yield uncertainty in the neutrosophic environments more effectively by considering the parameters which are prone to abrupt changes characterized by unpredictability.

    Citation: Sajida Kousar, Maryam Nazir Sangi, Nasreen Kausar, Dragan Pamucar, Ebru Ozbilge, Tonguc Cagin. Multi-objective optimization model for uncertain crop production under neutrosophic fuzzy environment: A case study[J]. AIMS Mathematics, 2023, 8(3): 7584-7605. doi: 10.3934/math.2023380

    Related Papers:

  • In real world uncertainty exist in almost every problem. Decision-makers are often unable to describe the situation accurately or predict the outcome of potential solutions due to uncertainty. To resolve these complicated situations, which include uncertainty, we use expert descriptive knowledge which can be expressed as fuzzy data. Pakistan, a country with a key geographic and strategic position in South Asia, relies heavily on irrigation for its economy, which involves careful consideration of the limits. A variety of factors can affect yield, including the weather and water availability. Crop productivity from reservoirs and other sources is affected by climate change. The project aims to optimize Kharif and Rabbi crop output in canal-irrigated areas. The optimization model is designed to maximize net profit and crop output during cropping seasons. Canal-connected farmed areas are variables in the crop planning model. Seasonal crop area, crop cultivated area, crop water requirement, canal capacity, reservoir evaporation, minimum and maximum storage, and overflow limits affect the two goals. The uncertainties associated with the entire production planning are incorporated by considering suitable membership functions and solved using the Multi-Objective Neutrosophic Fuzzy Linear Programming Model (MONFLP). For the validity and effectiveness of the technique, the model is tested for the wheat and rice production in Pakistan. The study puts forth the advantages of neutrosophic fuzzy algorithm which has been proposed, and the analyses derived can be stated to deal with yield uncertainty in the neutrosophic environments more effectively by considering the parameters which are prone to abrupt changes characterized by unpredictability.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] K. T. Atansassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] R. E. Bellman, L. A. Zadeh, Decision-making in a fuzzy environment, Manag. Sci., 17 (1970), B-141. https://doi.org/10.1287/mnsc.17.4.B141 doi: 10.1287/mnsc.17.4.B141
    [4] H. Tanaka, T. Okuda, K. Asai, Fuzzy mathematical programming, Trans. Soc. Instrum. Control Eng., 9 (1973), 607–613. https://doi.org/10.9746/sicetr1965.9.607 doi: 10.9746/sicetr1965.9.607
    [5] H. J. Zimmermann, Fuzzy programming and linear programming with several objective functions, Fuzzy Set. Syst., 1 (1978), 45–55. https://doi.org/10.1016/0165-0114(78)90031-3 doi: 10.1016/0165-0114(78)90031-3
    [6] P. P. Angelov, Optimization in an intuitionistic fuzzy environment, Fuzzy Set. Syst., 86 (1997), 299–306. https://doi.org/10.1016/S0165-0114(96)00009-7 doi: 10.1016/S0165-0114(96)00009-7
    [7] F. Ahmad, S. Ahmad, M. Zaindin, A. Y. Adhami, A robust neutrosophic modeling and optimization approach for integrated energy-food-water security nexus management under uncertainty, Water, 13 (2021), 121. https://doi.org/10.3390/w13020121 doi: 10.3390/w13020121
    [8] M. Sarkar, T. K. Roy, F. Smarandache, Neutrosophic optimization and its application on structural designs, Infinite Study, Brussels: Pons, 2018.
    [9] S. K. De, I. Beg, Triangular dense fuzzy sets and new defuzzification methods, J. Intell. Fuzzy Syst., 31 (2016), 469–477. https://doi.org/10.3233/IFS-162160 doi: 10.3233/IFS-162160
    [10] S. K. De, I. Beg, Triangular dense fuzzy neutrosophic sets, Neutrosophic Sets Sy., 13 (2016), 24–37.
    [11] R. Sahu, S. R. Dash, S. Das, Career selection of students using hybridized distance measure based on picture fuzzy set and rough set theory, Decis. Making: Appl. Manag. Eng., 4 (2021), 104–126. https://doi.org/10.31181/dmame2104104s doi: 10.31181/dmame2104104s
    [12] A. Ashraf, K. Ullah, A. Hussain, M. Bari, Interval valued picture fuzzy Maclaurin symmetric mean operator with application in multiple attribute decision-making, Rep. Mech. Eng., 3 (2022), 210–226. https://doi.org/10.31181/rme20020042022a doi: 10.31181/rme20020042022a
    [13] S. Kousar, U. Shafqat, N. Kausar, D. Pamucar, Y. U. Gaba, Energy source allocation decision-making in textile industry: a novel symmetric and asymmetric spherical fuzzy linear optimization approach, Math. Probl. Eng., 2022. https://doi.org/10.1155/2022/2659826 doi: 10.1155/2022/2659826
    [14] F. Ahmad, Robust neutrosophic programming approach for solving intuitionistic fuzzy multiobjective optimization problems, Complex Intell. Syst., 7 (2021), 1935–1954. https://doi.org/10.1007/s40747-021-00299-9 doi: 10.1007/s40747-021-00299-9
    [15] M. Sarkar, S. Dey, T. K. Roy, Multi-objective Neutrosophic optimization technique and its application to structural design, Infinite Study, Brussels: Pons, 2016. https://doi.org/10.5120/ijca2016911325
    [16] F. Ahmad, S. Ahmad, A. T. Soliman, M. Abdollahian, Solving multi-level multiobjective fractional programming problem with rough interval parameter in neutrosophic environment, RAIRO-Oper. Res., 55 (2021), 2567–2581. https://doi.org/10.1051/ro/2021108 doi: 10.1051/ro/2021108
    [17] A. A. Chandio, J. Yuansheng, H. Magsi, Agricultural sub-sectors performance: An analysis of sector-wise share in agriculture GDP of Pakistan, Int. J. Econ. Financ., 8 (2016), 156–162. https://doi.org/10.5539/ijef.v8n2p156 doi: 10.5539/ijef.v8n2p156
    [18] Government of Pakistan, 2014-15 Economic survey of Pakistan, Ministry of Finance Division, Economic Advisor's Wing, Islamabad, Pakistan, 2015.
    [19] Government of Pakistan, 2020-21 Economic survey of Pakistan, Ministry of Finance Division, Economic Advisor's Wing, Islamabad, Pakistan, 2021.
    [20] M. Aslam, Agricultural productivity current scenario, constraints and future prospects in Pakistan, Sarhad J. Agricul., 32 (2016), 289–303. https://doi.org/10.17582/journal.sja/2016.32.4.289.303 doi: 10.17582/journal.sja/2016.32.4.289.303
    [21] H. Khalil, Irrigation system of Pakistan, Project report, University of Agriculture Faisalabad, Pakistan, 2014.
    [22] N. Hassan, U. K. Amjad, B. Nadeem, Investigating the impacts of climate change on crops: A case study of Southern Punjab, Pakistan Soc. Sci. Rev., 5 (2021), 1125–1136. https://doi.org/10.35484/pssr.2021(5-Ⅱ)86 doi: 10.35484/pssr.2021(5-Ⅱ)86
    [23] M. Lemma, A. Alemie, S. Habtu, C. Lemma, Analyzing the impacts of on set, length of growing period and dry spell length on chickpea production in Adaa District (East Showa Zone) of Ethiopia, J. Earth Sci. Climatic Change, 7 (2016), 349. https://doi.org/10.4172/2157-7617.1000349 doi: 10.4172/2157-7617.1000349
    [24] A. A. Chandio, Y. Jiang, W. Akram, S. Adeel, M. Irfan, I. Jan, Addressing the effect of climate change in the framework of financial and technological development on cereal production in Pakistan, J. Clean. Prod., 288 (2021), 125637. https://doi.org/10.1016/j.jclepro.2020.125637 doi: 10.1016/j.jclepro.2020.125637
    [25] C. P. Tung, N. M. Hong, M. H. Li, Interval number fuzzy linear programming for climate change impact assessments of reservoir active storage, Paddy Water Environ., 7 (2009), 349–356. https://doi.org/10.1007/s10333-009-0185-7 doi: 10.1007/s10333-009-0185-7
    [26] S. Paseka, D. Marton, Optimal assessment of reservoir active storage capacity under uncertainty, In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings, SGEM, 19 (2019), 427–434. https://doi.org/10.5593/sgem2019/3.1/S12.055
    [27] G. M. W. Ullah, M. Nehring, A multi-objective mathematical model of a water management problem with environmental impacts: An application in an irrigation project, PLoS One, 16 (2021), e0255441. https://doi.org/10.1371/journal.pone.0255441 doi: 10.1371/journal.pone.0255441
    [28] A. Jamshidpey, M. Shourian, Crop pattern planning and irrigation water allocation compatible with climate change using a coupled network flow programming-heuristic optimization model, Hydrolog. Sci. J., 66 (2021), 90–103. https://doi.org/10.1080/02626667.2020.1844889 doi: 10.1080/02626667.2020.1844889
    [29] C. Li, Y. Cai, Q. Tan, X. Wang, C. Li, Q. Liu, et al., An integrated simulation-optimization modeling system for water resources management under coupled impacts of climate and land use variabilities with priority in ecological protection, Adv. Water Resour., 154 (2021), 103986. https://doi.org/10.1016/j.advwatres.2021.103986 doi: 10.1016/j.advwatres.2021.103986
    [30] Z. Gao, Q. H. Zhang, Y. D. Xie, Q. Wang, M. Dzakpasu, J. Q. Xiong, et al., A novel multi-objective optimization framework for urban green-gray infrastructure implementation under impacts of climate change, Sci. Total Environ., 825 (2022), 153954. https://doi.org/10.1016/j.scitotenv.2022.153954 doi: 10.1016/j.scitotenv.2022.153954
    [31] S. Guo, F. Zhang, B. A. Engel, Y. Wang, P. Guo, Y. N. Li, A distributed robust optimization model based on water-food-energy nexus for irrigated agricultural sustainable development, J. Hydrol., 606 (2022), 127394. https://doi.org/10.1016/j.jhydrol.2021.127394 doi: 10.1016/j.jhydrol.2021.127394
    [32] W. Yue, Z. Liu, M. Su, M. Xu, Q. Rong, C. Xu, et al., Inclusion of ecological water requirements in optimization of water resource allocation under changing climatic conditions, Water Resour. Manag., 36 (2022), 551–570. https://doi.org/10.1007/s11269-021-03039-3 doi: 10.1007/s11269-021-03039-3
    [33] N. Hao, P. Sun, L. Yang, Y. Qiu, Y. Chen, W. Zhao, Optimal allocation of water resources and eco‐compensation mechanism model based on the interval‐fuzzy two‐stage stochastic programming method for Tingjiang river, Int. J. Environ. Res. Public Health, 19 (2022), 149. https://doi.org/10.3390/ijerph19010149 doi: 10.3390/ijerph19010149
    [34] Q. Pan, C. Zhang, S. Guo, H. Sun, J. Du, P. Guo, An interval multi-objective fuzzy-interval credibility-constrained nonlinear programming model for balancing agricultural and ecological water management, J. Contam. Hydrol., 245 (2022), 103958. https://doi.org/10.1016/j.jconhyd.2022.103958 doi: 10.1016/j.jconhyd.2022.103958
    [35] L. Jin, C. Zhang, X. Wen, C. Sun, X. Fei, A neutrosophic set-based TLBO algorithm for the flexible job-shop scheduling problem with routing flexibility and uncertain processing times, Complex Intell. Syst., 7 (2021), 2833–2853. https://doi.org/10.1007/s40747-021-00461-3 doi: 10.1007/s40747-021-00461-3
    [36] C. Ren, Z. Xie, Y. Zhang, X. Wei, Y. Wang, D. Sun, An improved interval multi-objective programming model for irrigation water allocation by considering energy consumption under multiple uncertainties, J. Hydrol., 602 (2021), 126699. https://doi.org/10.1016/j.jhydrol.2021.126699 doi: 10.1016/j.jhydrol.2021.126699
    [37] Q. Yue, Y. Wang, L. Liu, J. Niu, P. Guo, P. Li, Type-2 fuzzy mixed-integer bi-level programming approach for multi-source multi-user water allocation under future climate change, J. Hydrol., 591 (2020), 125332. https://doi.org/10.1016/j.jhydrol.2020.125332 doi: 10.1016/j.jhydrol.2020.125332
    [38] Q. Yue, F. Zhang, C. Zhang, H. Zhu, Y. Tang, P. Guo, A full fuzzy-interval credibility-constrained nonlinear programming approach for irrigation water allocation under uncertainty, Ag. Water Manage., 230 (2020), 105961. https://doi.org/10.1016/j.agwat.2019.105961 doi: 10.1016/j.agwat.2019.105961
    [39] L. Sahoo, A. Banerjee, A. K. Bhunia, S. Chattopadhyay, An efficient GA-PSO approach for solving mixed-integer nonlinear programming problem in reliability optimization, Swarm and Evol. Comput., 19 (2014), 43–51. https://doi.org/10.1016/j.swevo.2014.07.002 doi: 10.1016/j.swevo.2014.07.002
    [40] F. Smarandache, Neutrosophic seta generalization of the intuitionistic fuzzy set, J. Def. Resour. Manag., 1 (2010), 107–116.
    [41] H. Wang, F. Smarandache, Y. Q. Zhang, R. Sunderraman, Interval neutrosophic sets and logic: Theory and applications in computing, 2005.
    [42] Q. Wang, Y. Huang, K. Shiming, M. Xinqiang, L. Youyuan, S. K. Das, et al., A novel method for solving multiobjective linear programming problems with triangular neutrosophic numbers, J. Math., 2021 (2021). https://doi.org/10.1155/2021/6631762 doi: 10.1155/2021/6631762
    [43] S. A. Edalatpanah, A direct model for triangular neutrosophic linear programming, Int. J. Neutrosophic Sci., 1 (2020), 19–28. https://doi.org/10.54216/IJNS.010104 doi: 10.54216/IJNS.010104
    [44] I. M. Hezam, S. A. H. Taher, A. Foul, A. F. Alrasheedi, Healthcare's sustainable resource planning using neutrosophic goal programming, J. Healthc. Eng., 2022 (2022), 3602792. https://doi.org/10.1155/2022/3602792 doi: 10.1155/2022/3602792
    [45] M. R. Seikh, S. Dutta, A nonlinear programming model to solve matrix games with pay-offs of single-valued neutrosophic numbers, Neutrosophic Sets Sy., 47 (2021), 366–383.
    [46] H. A. E. W. Khalifa, P. Kumar, Solving fully neutrosophic linear programming problem with application to stock portfolio selection, Croat. Oper. Res. Rev., 11 (2020), 165–176. https://doi.org/10.17535/crorr.2020.0014 doi: 10.17535/crorr.2020.0014
    [47] K. Khatter, Neutrosophic linear programming using possibilistic mean, Soft Comput., 24 (2020), 16847–16867. https://doi.org/10.1007/s00500-020-04980-y doi: 10.1007/s00500-020-04980-y
    [48] T. Bera, N. K. Mahapatra, Neutrosophic linear programming problem and its application to real life, Afr. Mat., 31 (2020), 709–726. https://doi.org/10.1007/s13370-019-00754-4 doi: 10.1007/s13370-019-00754-4
    [49] M. F. Khan, A. Haq, A. Ahmed, I. Ali, Multiobjective multi-product production planning problem using intuitionistic and neutrosophic fuzzy programming, IEEE Access, 9 (2021), 37466–37486. https://doi.org/10.1109/ACCESS.2021.3063725 doi: 10.1109/ACCESS.2021.3063725
    [50] S. Broumi, D. Ajay, P. Chellamani, L. Malayalan, M. Talea, A. Bakali, et al., Interval valued pentapartitioned neutrosophic graphs with an application to MCDM, Oper. Res. Eng. Sci., 5 (2022), 68–91. https://doi.org/10.31181/oresta031022031b doi: 10.31181/oresta031022031b
    [51] A. Haq, S. Gupta, A. Ahmed, A multi-criteria fuzzy neutrosophic decision-making model for solving the supply chain network problem, Neutrosophic Sets Sy., 46 (2021), 50–66.
    [52] A. Haq, U. M. Modibbo, A. Ahmed, I. Ali, Mathematical modeling of sustainable development goals of India agenda 2030: A neutrosophic programming approach, Environ. Dev. Sustain., 24 (2021), 11991–12018. https://doi.org/10.1007/s10668-021-01928-6 doi: 10.1007/s10668-021-01928-6
    [53] S. Islam, K. Das, Multi-objective inventory model with deterioration under space constraint: Neutrosophic hesitant fuzzy programming approach, Neutrosophic Sets Sy., 47 (2021), 124–146. https://doi.org/10.1007/978-3-030-57197-9_11 doi: 10.1007/978-3-030-57197-9_11
    [54] F. Ahmad, Interactive neutrosophic optimization technique for multiobjective programming problems: An application to pharmaceutical supply chain management, Ann. Oper. Res., 2021. https://doi.org/10.1007/s10479-021-03997-2 doi: 10.1007/s10479-021-03997-2
    [55] S. K. Das, Application of transportation problem under pentagonal neutrosophic environment, Infinite Study, 1 (2020), 27–40.
    [56] C. Veeramani, S. A. Edalatpanah, S. Sharanya, Solving the multiobjective fractional transportation problem through the neutrosophic goal programming approach, Discrete Dyn. Nat. Soc., 2021 (2021), 1–17. https://doi.org/10.1155/2021/7308042 doi: 10.1155/2021/7308042
    [57] A. Bhaumik, S. K. Roy, G. W. Weber, Multi-objective linguistic-neutrosophic matrix game and its applications to tourism management, J. Dyn. Games, 8 (2021), 101–118. https://doi.org/10.3934/jdg.2020031 doi: 10.3934/jdg.2020031
    [58] S. Luo, W. Pedrycz, L. Xing, Interactive multilevel programming approaches in neutrosophic environments, J. Amb. Intel. Hum. Comp., 2021. https://doi.org/10.1007/s12652-021-02975-7 doi: 10.1007/s12652-021-02975-7
    [59] M. Touqeer, R. Umer, A. Ahmadian, S. Salahshour, M. Ferrara, An optimal solution of energy scheduling problem based on chance-constraint programming model using Interval-valued neutrosophic constraints, Optimiz. Eng., 22 (2021), 2233–2261. https://doi.org/10.1007/s11081-021-09622-2 doi: 10.1007/s11081-021-09622-2
    [60] T. S. Haque, A. Chakraborty, S. P. Mondal, S. Alam, A novel logarithmic operational law and aggregation operators for trapezoidal neutrosophic number with MCGDM skill to determine most harmful virus, Appl. Intell., 52 (2022), 4398–4417. https://doi.org/10.1007/s10489-021-02583-0 doi: 10.1007/s10489-021-02583-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1478) PDF downloads(88) Cited by(18)

Article outline

Figures and Tables

Figures(6)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog