Research article

Invariant properties of modules under smash products from finite dimensional algebras

  • Received: 09 October 2022 Revised: 17 December 2022 Accepted: 21 December 2022 Published: 09 January 2023
  • MSC : 16G10, 16G20

  • We give the relationship between indecomposable modules over the finite dimensional $ k $-algebra $ A $ and the smash product $ A\sharp G $ respectively, where $ G $ is a finite abelian group satisfying $ G\subseteq Aut(A) $, and $ k $ is an algebraically closed field with the characteristic not dividing the order of $ G $. More precisely, we construct all indecomposable $ A\sharp G $-modules from indecomposable $ A $-modules and prove that an $ A\sharp G $-module is indecomposable if and only if it is an indecomposable $ G $-stable module over $ A $. Besides, we give the relationship between simple, projective and injective modules in $ modA $ and those in $ modA\sharp G $.

    Citation: Wanwan Jia, Fang Li. Invariant properties of modules under smash products from finite dimensional algebras[J]. AIMS Mathematics, 2023, 8(3): 6737-6748. doi: 10.3934/math.2023342

    Related Papers:

  • We give the relationship between indecomposable modules over the finite dimensional $ k $-algebra $ A $ and the smash product $ A\sharp G $ respectively, where $ G $ is a finite abelian group satisfying $ G\subseteq Aut(A) $, and $ k $ is an algebraically closed field with the characteristic not dividing the order of $ G $. More precisely, we construct all indecomposable $ A\sharp G $-modules from indecomposable $ A $-modules and prove that an $ A\sharp G $-module is indecomposable if and only if it is an indecomposable $ G $-stable module over $ A $. Besides, we give the relationship between simple, projective and injective modules in $ modA $ and those in $ modA\sharp G $.



    加载中


    [1] I. Assem, D. Simson, A. Skowronski, Elements of the representation theory of associative algebras, Cambridge: Cambridge University Press, 2006. http://dx.doi.org/10.1017/CBO9780511614309
    [2] M. Auslander, I. Reiten, S. Smalo, Representation theory of Artin algebras, Cambridge: Cambridge University Press, 1995. http://dx.doi.org/10.1017/CBO9780511623608
    [3] O. Funes, M. Redondo, Skew group algebras of simply connected algebras, Ann. Sci. Math. Quebec, 26 (2002), 171–180.
    [4] P. Gabriel, The universal cover of a representation-finite algebra, In: Representations of algebras, Berlin: Springer-Verlag, 1981, 68–105. http://dx.doi.org/10.1007/BFb0092986
    [5] A. Hubery, Representation of quivers respecting a quiver automorphism and a theorem of Kac, Ph. D Thesis, University of Leeds, 2002.
    [6] A. Hubery, Quiver representations respecting a quiver automorphism: a generalisation of a theorem of Kac, J. Lond. Math. Soc., 69 (2004), 79–96. http://dx.doi.org/10.1112/S0024610703004988 doi: 10.1112/S0024610703004988
    [7] B. Hou, S. Yang, Skew group algebras of deformed preprojective algebras, J. Algebra, 332 (2011), 209–228. http://dx.doi.org/10.1016/j.jalgebra.2011.02.007 doi: 10.1016/j.jalgebra.2011.02.007
    [8] G. Liu, Classification of finite dimensional basic Hopf algebras and related topics, Ph. D Thesis, Zhejiang University, 2005.
    [9] F. Li, M. Zhang, Invariant properties of representations under cleft extensions, Sci. China Ser. A, 50 (2007), 121–131. http://dx.doi.org/10.1007/s11425-007-2026-8 doi: 10.1007/s11425-007-2026-8
    [10] A. Martsinkovsky, D. Zangurashvili, The stable category of a left hereditary ring, J. Pure Appl. Algebra, 219 (2015), 4061–4089. http://dx.doi.org/10.1016/j.jpaa.2015.02.007 doi: 10.1016/j.jpaa.2015.02.007
    [11] R. Martínez-Villa, Skew group algebras and their Yoneda algebras, Math. J. Okayama Univ., 43 (2001), 1–16.
    [12] I. Reiten, C. Riedtmann, Skew group algebras in the representation theory of Artin algebras, J. Algebra, 92 (1985), 224–282. http://dx.doi.org/10.1016/0021-8693(85)90156-5 doi: 10.1016/0021-8693(85)90156-5
    [13] M. Zhang, F. Li, Representations of skew group algebras induced from isomorphically invariant modules over path algebras, J. Algebra, 321 (2009), 567–581. http://dx.doi.org/10.1016/j.jalgebra.2008.09.035 doi: 10.1016/j.jalgebra.2008.09.035
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1131) PDF downloads(46) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog