Research article

Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel

  • Correction on: AIMS Mathematics 8: 13785-13786.
  • Received: 24 October 2022 Revised: 07 December 2022 Accepted: 12 December 2022 Published: 21 December 2022
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • In this paper, using positive symmetric functions, we offer two new important identities of fractional integral form for convex and harmonically convex functions. We then prove new variants of the Hermite-Hadamard-Fejér type inequalities for convex as well as harmonically convex functions via fractional integrals involving an exponential kernel. Moreover, we also present improved versions of midpoint type Hermite-Hadamard inequality. Graphical representations are given to validate the accuracy of the main results. Finally, applications associated with matrices, q-digamma functions and modifed Bessel functions are also discussed.

    Citation: Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri. Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel[J]. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283

    Related Papers:

  • In this paper, using positive symmetric functions, we offer two new important identities of fractional integral form for convex and harmonically convex functions. We then prove new variants of the Hermite-Hadamard-Fejér type inequalities for convex as well as harmonically convex functions via fractional integrals involving an exponential kernel. Moreover, we also present improved versions of midpoint type Hermite-Hadamard inequality. Graphical representations are given to validate the accuracy of the main results. Finally, applications associated with matrices, q-digamma functions and modifed Bessel functions are also discussed.



    加载中


    [1] J. Hadamard, Étude sur les propriétés des fonctions entiéres en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.
    [2] S. S. Dragomir, R. P. Agarwal, Two inequalities for diferentiable mappings and applications to special means fo real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [3] U. S. Kirmaci, M. E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 153 (2004), 361–368. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4
    [4] M. Alomari, M. Darus, U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), 225–232. https://doi.org/10.1016/j.camwa.2009.08.002 doi: 10.1016/j.camwa.2009.08.002
    [5] B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space., 2012 (2012), 1–14. https://doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438
    [6] M. E. Özdemir, M. Avci, E. Set, On some inequalities of Hermite-Hadamard type via $m$-convexity, Appl. Math. Lett., 23 (2010), 1065–1070. https://doi.org/10.1016/j.aml.2010.04.037 doi: 10.1016/j.aml.2010.04.037
    [7] H. Ahmad, M. Tariq, S. K. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite-Hadamard type integral inequalities for special functions, Fractal Fract., 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
    [8] S. K. Sahoo, M. Tariq, H. Ahmad, B. Kodamasingh, A. A. Shaikh, T. Botmart, et al., Some novel fractional integral inequalities over a new class of generalized convex function, Fractal Fract., 6 (2022). https://doi.org/10.3390/fractalfract6010042
    [9] Í. Íşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2013), 935–942.
    [10] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
    [11] K. Liu, J. Wang, D. O'Regan On the Hermite-Hadamard type inequality for $\psi$-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 1–10. https://doi.org/10.1186/s13660-019-1982-1 doi: 10.1186/s13660-019-1982-1
    [12] İ. Mumcu, E. Set, A. O. Akdemir, F. Jarad, New extensions of Hermite-Hadamard inequalities via generalized proportional fractional integral, Numer. Meth. Part. D. E., 2021. https://doi.org/10.1002/num.22767
    [13] T. Aljaaidi, D. B. Pachpatte, T. Abdeljawad, M. S. Abdo, M. A. Almalahi, S. S. Redhwan, Generalized proportional fractional integral Hermite-Hadamard's inequalities, Adv. Differ. Equ., 2021 (2021), 1–9. https://doi.org/10.1186/s13662-021-03651-y doi: 10.1186/s13662-021-03651-y
    [14] S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving $k$-fractional operator for $(\overline{h}, m)$-convex functions, Symmetry, 13 (2021). https://doi.org/10.3390/sym13091686
    [15] M. Gürbüz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal. Appl., 2020 (2020), 1–10. https://doi.org/10.1186/s13660-020-02438-1 doi: 10.1186/s13660-020-02438-1
    [16] S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator, Fractal Fract., 6 (2022), 171. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171
    [17] A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., 44 (2021), 8414–8431. https://doi.org/10.1002/mma.6188 doi: 10.1002/mma.6188
    [18] I. Ullah, S. Ahmad, Q. Al-Mdallal, Z. A. Khan, H. Khan, A. Khan, Stability analysis of a dynamical model of tuberculosis with incomplete treatment, Adv. Differ. Equ., 2020 (2020). https://doi.org/10.1186/s13662-020-02950-0
    [19] K. Khan, R. Zarin, A. Khan, A. Yusuf, M. Al-Shomrani, A. Ullah, Stability analysis of five-grade Leishmania epidemic model with harmonic mean-type incidence rate, Adv. Differ. Equ., 2021 (2021), 1–27. https://doi.org/10.1186/s13662-021-03249-4 doi: 10.1186/s13662-021-03249-4
    [20] Z. A. Khan, A. Khan, T. Abdeljawad, H. Khan, H. Computational analysis of fractional order imperfect testing infection disease model, Fractals, 2022 (2022). https://doi.org/10.1142/S0218348X22401697
    [21] K. Shah, Z. A. Khan, A. Ali, R. Amin, H. Khan, A. Khan, Haar wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative, Alex. Eng. J., 59 (2020), 3221–3231. https://doi.org/10.1016/j.aej.2020.08.028 doi: 10.1016/j.aej.2020.08.028
    [22] A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis of fractional nabla difference COVID-19 model, Results Phys., 22 (2021), 103888. https://doi.org/10.1016/j.rinp.2021.103888 doi: 10.1016/j.rinp.2021.103888
    [23] H. Khan, C. Tunc, A. Khan, Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations, Discrete Cont. Dyn. Syst. Ser.-S, 13 (2020), 2475. https://doi.org/10.3934/dcdss.2020139 doi: 10.3934/dcdss.2020139
    [24] A. Alkhazzan, P. Jiang, D. Baleanu, H. Khan, A. Khan, Stability and existence results for a class of nonlinear fractional differential equations with singularity, Math. Meth. Appl. Sci., 41 (2018), 9321–9334. https://doi.org/10.1002/mma.5263 doi: 10.1002/mma.5263
    [25] A. Khan, Z. A. Khan, T. Abdeljawad, H. Khan, Analytical analysis of fractional-order sequential hybrid system with numerical application, Adv. Cont. Discr. Mod., 2022 (2022), 1–19. https://doi.org/10.1186/s13662-022-03685-w doi: 10.1186/s13662-022-03685-w
    [26] I. Işcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Stud. Univ. Babeş-Bol. Sect. A Math., 60 (2015), 355–366.
    [27] F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals, Ital. J. Pure Appl. Math., 33 (2014), 299–306.
    [28] H. Ogulmus, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Filomat, 35 (2021), 2425–2436. https://doi.org/10.2298/FIL2107425O doi: 10.2298/FIL2107425O
    [29] S. I. Butt, P. Agarwal, S. Yousaf, J. L. Guirao, Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications, J. Inequal. Appl., 2022 (2022), 1–18. https://doi.org/10.1186/s13660-021-02735-3 doi: 10.1186/s13660-021-02735-3
    [30] S. K. Sahoo, R. P. Agarwal, P. O. Mohammed, B. Kodamasingh, K. Nonlaopon, K. M. Abualnaja, Hadamard-Mercer, Dragomir-Agarwal-Mercer, and Pachpatte-Mercer type fractional inclusions for convex functions with an exponential kernel and their applications, Symmetry, 14 (2022), 836. https://doi.org/10.3390/sym14040836 doi: 10.3390/sym14040836
    [31] S. I. Butt, S. Yousaf, K. A. Khan, R. M. Mabela, A. M. Alsharif, Fejer-Pachpatte-Mercer-type inequalities for harmonically convex functions involving exponential function in kernel, Math. Prob. Eng., 2022 (2022). https://doi.org/10.1155/2022/7269033
    [32] M. A. Latif, H. Kalsoom, Z. A. Khan, Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function, AIMS Math., 7 (2022), 4176–4198. https://doi.org/10.3934/math.2022232 doi: 10.3934/math.2022232
    [33] P. Xu, S. I. Butt, S. Yousaf, A. Aslam, T. J. Zia, Generalized fractal Jensen-Mercer and Hermite-Mercer type inequalities via h-convex functions involving Mittag-Leffler kernel, Alex. Eng. J., 61 (2022), 4837–4846. https://doi.org/10.1016/j.aej.2021.10.033 doi: 10.1016/j.aej.2021.10.033
    [34] S. I. Butt, A. Nosheen, J. Nasir, K. A. Khan, R. M. Mabela, New fractional Mercer-Ostrowski type inequalities with respect to monotone function, Math. Prob. Eng., 2022. https://doi.org/10.1155/2022/7067543
    [35] J. Nasir, S. Qaisar, S. I. Butt, H. Aydi, M. De la Sen, Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications, AIMS Math., 7 (2022) 3418–3439. https://doi.org/10.3934/math.2022190
    [36] M. Samraiz, Z. Perveen, G. Rahman, M. A. Khan, K. S. Nisar, Hermite-Hadamard fractional inequalities for differentiable functions, Fractal Fract., 6 (2022), 60. https://doi.org/10.3390/fractalfract6020060 doi: 10.3390/fractalfract6020060
    [37] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Note., 17 (2016) 1049–1059. https://doi.org/10.18514/MMN.2017.1197
    [38] M. Andrić, J. Pečarič, I. Perić, A multiple Opial type inequality for the Riemann-Liouville fractional derivatives, J. Math. Inequal., 7 (2013), 139–150.
    [39] H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, D. Baleanu, B. Kodamasingh, Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators, Int. J. Comput. Intell. Syst., 15 (2022), 1–12. https://doi.org/10.1007/s44196-021-00061-6 doi: 10.1007/s44196-021-00061-6
    [40] M. K. Neamah, A. Ibrahim, H. S. Mehdy, S. S. Redhwan, M. S. Abdo, Some new fractional inequalities involving convex functions and generalized fractional integral operator, J. Funct. Space., 2022 (2022). https://doi.org/10.1155/2022/2350193
    [41] T. A. Aljaaidi, D. B. Pachpatte, M. S. Abdo, T. Botmart, H. Ahmad, M. A. Almalahi, et al., $(k, \Psi)$-proportional fractional integral Pólya-Szegö and Grüss-type inequalities, Fractal Fract., 5 (2021), 172. https://doi.org/10.3390/fractalfract5040172 doi: 10.3390/fractalfract5040172
    [42] C. P. Niculescu, L. E. Persson, Convex functions and their applications, Springer, New York, USA, 2006.
    [43] I. G. Macdonald, Symmetric functions and orthogonal polynomials, American Mathematical Society, New York, NY, USA, 1997.
    [44] L. Fejér, Uber die Fourierreihen, II, J. Math. Naturwiss Anz. Ungar. Akad. Wiss Hung, 24 (1906), 369–390.
    [45] M. A. Latif, S. S. Dragomir, E. Momoniat, Some Fejér type inequalities for harmonically-convex functions with applications to special means, 13 (2020), 2475–2487. https://doi.org/10.3934/dcdss.2020139
    [46] F. Chen, S. Wu, Fejér and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014 (2014). https://doi.org/10.1155/2014/386806
    [47] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.
    [48] H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Eng. Comput., 5 (2021), 135–166. http://dx.doi.org/10.55579/jaec.202153.340 doi: 10.55579/jaec.202153.340
    [49] B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, Comput. Appl. Math., 353 (2019), 120–129. https://doi.org/10.1016/j.cam.2018.12.030 doi: 10.1016/j.cam.2018.12.030
    [50] E. Awad, On the time-fractional Cattaneo equation of distributed order, Physica A, 518 (2019), 210–233.
    [51] M. Sababheh, Convex functions and means of matrices, arXiv: 1606.08099v1, 2016.
    [52] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press: Cambridge, UK, 1995.
    [53] A. Bhunia, S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169–178. https://doi.org/10.1016/j.cie.2014.05.014 doi: 10.1016/j.cie.2014.05.014
    [54] W. Liu, F. Shi, G. Ye, D. Zhao, The properties of harmonically cr-h-convex function and its applications, Mathematics, 10 (2022), 2089. https://doi.org/10.3390/math10122089 doi: 10.3390/math10122089
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1189) PDF downloads(99) Cited by(9)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog