Research article

Critical regularity of nonlinearities in semilinear effectively damped wave models

  • Received: 29 August 2022 Revised: 07 November 2022 Accepted: 16 November 2022 Published: 08 December 2022
  • MSC : 35L52, 35L71

  • In this paper we consider the Cauchy problem for the semilinear effectively damped wave equation

    $ \begin{equation*} u_{tt}-u_{xx}+b(t)u_{t} = |u|^{3}\mu(|u|), \, \, \, u(0, x) = u_{0}(x), \, \, \, u_{t}(0, x) = u_{1}(x). \end{equation*} $

    Our goal is to propose sharp conditions on $ \mu $ to obtain a threshold between global (in time) existence of small data Sobolev solutions (stability of the zero solution) and blow-up behaviour even of small data Sobolev solutions.

    Citation: Abdelhamid Mohammed Djaouti, Michael Reissig. Critical regularity of nonlinearities in semilinear effectively damped wave models[J]. AIMS Mathematics, 2023, 8(2): 4764-4785. doi: 10.3934/math.2023236

    Related Papers:

  • In this paper we consider the Cauchy problem for the semilinear effectively damped wave equation

    $ \begin{equation*} u_{tt}-u_{xx}+b(t)u_{t} = |u|^{3}\mu(|u|), \, \, \, u(0, x) = u_{0}(x), \, \, \, u_{t}(0, x) = u_{1}(x). \end{equation*} $

    Our goal is to propose sharp conditions on $ \mu $ to obtain a threshold between global (in time) existence of small data Sobolev solutions (stability of the zero solution) and blow-up behaviour even of small data Sobolev solutions.



    加载中


    [1] M. D'Abbicco, The threshold of effective damping for semilinear wave equations, Math. Methods Appl. Sci., 38 (2015), 1032–1045. https://doi.org/10.1002/mma.3126 doi: 10.1002/mma.3126
    [2] M. D'Abbicco, S. Lucente, A modified test function method for damped wave equations, Adv. Nonlinear Stud., 13 (2013), 867–892. https://doi.org/10.1515/ans-2013-0407 doi: 10.1515/ans-2013-0407
    [3] M. D'Abbicco, S. Lucente, M. Reissig, A shift in the Strauss exponent for semilinear wave equations with a not effective damping, J. Differ. Equ., 259 (2015), 5040–5073. https://doi.org/10.1016/j.jde.2015.06.018 doi: 10.1016/j.jde.2015.06.018
    [4] M. D'Abbicco, S. Lucente, M. Reissig, Semi-linear wave equations with effective damping, Chin. Ann. Math. Ser. B, 34 (2013), 345–380. https://doi.org/10.1007/s11401-013-0773-0 doi: 10.1007/s11401-013-0773-0
    [5] M. R. Ebert, G. Girardi, M. Reissig, Critical regularity of nonlinearities in semilinear classical damped wave equations, Math. Ann., 378 (2020), 1311–1326. https://doi.org/10.1007/s00208-019-01921-5 doi: 10.1007/s00208-019-01921-5
    [6] A. Friedman, Partial differential equations, Corrected reprint of the original edition, Robert E. Krieger Publishing Co., New York, 1976.
    [7] R. Ikehata, M. Ohta, Critical exponents for semilinear dissipative wave equations in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 269 (2002), 87–97. https://doi.org/10.1016/S0022-247X(02)00021-5 doi: 10.1016/S0022-247X(02)00021-5
    [8] J. Lin, K. Nishihara, J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping, Discrete Contin. Dyn. Syst., 32 (2012), 4307–4320. https://doi.org/10.3934/dcds.2012.32.4307 doi: 10.3934/dcds.2012.32.4307
    [9] A. Mohammed Djaouti, Semilinear systems of weakly coupled damped waves, Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2018.
    [10] M. Nakao, K. Ono, Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations, Math. Z., 214 (1993), 325–342. https://doi.org/10.1007/BF02572407 doi: 10.1007/BF02572407
    [11] W. Nunes do Nascimento, A. Palmieri, M. Reissig, Semi-linear wave models with power non-linearity and scale invariant time-dependent mass and dissipation, Math. Nachr., 290 (2017), 1779–1805. https://doi.org/10.1002/mana.201600069 doi: 10.1002/mana.201600069
    [12] A. Palmieri, Global in time existence and blow-up results for a semilinear wave equation with scale-invariant damping and mass, Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2018.
    [13] A. Palmieri, M. Reissig, Semi-linear wave models with power non-linearity and scale invariant time-dependent mass and dissipation, Ⅱ, Math. Nachr., 291 (2018), 1859–1892. https://doi.org/10.1002/mana.201700144 doi: 10.1002/mana.201700144
    [14] G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differ. Equ., 174 (2001), 464–489. https://doi.org/10.1006/jdeq.2000.3933 doi: 10.1006/jdeq.2000.3933
    [15] J. Wirth, Asymptotic properties of solutions to wave equations with time-dependent dissipation, PhD Thesis, TU Bergakademie Freiberg, 2004.
    [16] J. Wirth, Wave equations with time-dependent dissipation Ⅱ, Effective dissipation, J. Differ. Equ., 232 (2007), 74–103. https://doi.org/10.1016/j.jde.2006.06.004 doi: 10.1016/j.jde.2006.06.004
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1268) PDF downloads(59) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog